Universal behavior for electromagnetic interference shielding effectiveness of polymer based composite materials

Composites Science and Technology - Tập 221 - Trang 109351 - 2022
C. Retailleau1, J. Alaa Eddine2, F. Ndagijimana2, F. Haddad3, B. Bayard3, B. Sauviac3, P. Alcouffe1, M. Fumagalli1, V. Bounor-Legaré1, A. Serghei1
1Université Claude Bernard Lyon 1, IMP, CNRS-UMR 5223, 69622, Villeurbanne, France
2Université de Grenoble Alpes, Grenoble, France
3Université Jean Monnet, Laboratoire Hubert Curien, Saint-Etienne, France

Tài liệu tham khảo

Paul, 2006 Schulz, 1988, Shielding theory and practice, IEEE Trans. Electromagn C., 30, 187, 10.1109/15.3297 Han, 2020, Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding, ACS Nano, 14, 5008, 10.1021/acsnano.0c01312 Chung, 2020, Materials for electromagnetic interference shielding, Mater. Chem. Phys., 255, 123587, 10.1016/j.matchemphys.2020.123587 Al-Saleh, 2013, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study, Carbon, 60, 146, 10.1016/j.carbon.2013.04.008 Thomassin, 2013, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials, Mater. Sci. Eng. R Rep., 74, 211, 10.1016/j.mser.2013.06.001 Chung, 2001 Qin, 2012, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles, J. Appl. Phys., 111, 10.1063/1.3688435 Ganguly, 2018, Polymer nanocomposites for electromagnetic interference shielding: a review, J. Nanosci. Nanotechnol., 18, 7641, 10.1166/jnn.2018.15828 Al-Saleh, 1980, Carbon nanofiber/polyethylene nanocomposite: processing behavior, microstructure and electrical properties, Mater. Des., 52, 128, 10.1016/j.matdes.2013.05.038 Keith Jason, 2005, Shielding effectiveness density theory for carbon fiber/nylon 6,6 composites, Polym. Compos., 26, 671, 10.1002/pc.20139 Lee, 2019, Low percolation 3D Cu and Ag shell network composites for EMI shielding and thermal conduction, Compos. Sci. Technol., 182, 107778, 10.1016/j.compscitech.2019.107778 Ju, 2020, Lightweight multifunctional polypropylene/carbon nanotubes/carbon black nanocomposite foams with segregated structure, ultralow percolation threshold and enhanced electromagnetic interference shielding performance, Compos. Sci. Technol., 193, 108116, 10.1016/j.compscitech.2020.108116 Ma, 2020, Stretchable conductors of multi-walled carbon nanotubes (MWCNTs) filled thermoplastic vulcanizate (TPV) composites with enhanced electromagnetic interference shielding performance, Compos. Sci. Technol., 195, 108195, 10.1016/j.compscitech.2020.108195 Mamunya, 2019, Influence of conductive nano- and microfiller distribution on electrical conductivity and EMI shielding properties of polymer/carbon composites, Compos. Sci. Technol., 170, 51, 10.1016/j.compscitech.2018.11.037 Kirkpatrick, 1973, Percolation and conduction, Rev. Mod. Phys., 45, 574, 10.1103/RevModPhys.45.574 Balberg, 1984, Percolation thresholds in the three-dimensional sticks system, Phys. Rev. Lett., 52, 1465, 10.1103/PhysRevLett.52.1465 Bauhofer, 2009, A review and analysis of electrical percolation in carbon nanotube polymer composites, Compos. Sci. Technol., 69, 1486, 10.1016/j.compscitech.2008.06.018 Shi, 2019, Percolation behavior of electromagnetic interference shielding in polymer/multi-walled carbon nanotube nanocomposites, Compos. Sci. Technol., 170, 70, 10.1016/j.compscitech.2018.11.033 Shahzad, 2016, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science, 353, 1137, 10.1126/science.aag2421 McClory, 2010, Electrical and rheological percolation of PMMA/MWCNT nanocomposites as a function of CNT geometry and functionality, Eur. Polym. J., 46, 854, 10.1016/j.eurpolymj.2010.02.009 Das, 2009, Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding, Polym. Eng. Sci., 49, 1627, 10.1002/pen.21384 Al-Saleh, 2013, X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites, J. Phys. Appl. Phys., 46, 10.1088/0022-3727/46/3/035304 Al-Ghamdi, 2016, Correlation between electrical conductivity and microwave shielding effectiveness of natural rubber based composites, containing different hybrid fillers obtained by impregnation technology, Mater. Sci. Appl., 7, 496 Al-Saleh, 2008, Electromagnetic interference (EMI) shielding effectiveness of PP/PS polymer blends containing high structure carbon black, Macromol. Mater. Eng., 293, 621, 10.1002/mame.200800060 Goyal, 2013, Cost-efficient high performance polyetheretherketone/expanded graphite nanocomposites with high conductivity for EMI shielding application, Mater. Chem. Phys., 142, 195, 10.1016/j.matchemphys.2013.07.005 Jou, 2001, Electromagnetic shielding of nylon-66 composites applied to laser modules, J. Electron. Mater., 30, 1287, 10.1007/s11664-001-0113-0 Wilson, 1988, Techniques for measuring the electromagnetic shielding effectiveness of materials. I. Far-field source simulation, IEEE Trans. Electromagn C., 30, 239, 10.1109/15.3302 Sun, 2016, Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies, Materials, 9, 231, 10.3390/ma9040231 Al-Saleh, 2009, A review of vapor grown carbon nanofiber/polymer conductive composites, Carbon, 47, 2, 10.1016/j.carbon.2008.09.039 Haddad, 2020, Low frequency relation between transfer impedance and shielding effectiveness of braided cables and grid shields, IEEE transaction on electromagnetic compatibility, IEEE Trans. Electromagn C., 62, 2423, 10.1109/TEMC.2019.2960163 Al-Saleh, 2015, Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites, Synth. Met., 205, 78, 10.1016/j.synthmet.2015.03.032 Chou, 2005, Effect of mixing process on electromagnetic interference shielding effectiveness of nickel/acrylonitrile–butadiene–styrene composites, J. Appl. Polym. Sci., 97, 128, 10.1002/app.21740 Yoo, 2014, Effects of hybrid fillers on the electromagnetic interference shielding effectiveness of polyamide 6/conductive filler composites, J. Mater. Sci., 49, 1701, 10.1007/s10853-013-7855-y Li, 2018, Highly filled biochar/ultra-high molecular weight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding, Compos. B Eng., 153, 277, 10.1016/j.compositesb.2018.07.049 Das, 2001, Electromagnetic interference shielding effectiveness of conductive carbon black and carbon fiber‐filled composites based on rubber and rubber blends, Adv. Polym. Technol., 20, 226, 10.1002/adv.1018 Zhang, 2018, Effect of hierarchical structure on electrical properties and percolation behavior of multiscale composites modified by carbon nanotube coating, Compos. Sci. Technol., 164, 160, 10.1016/j.compscitech.2018.05.037 Wang, 2020, Theoretical modeling and experimental verification of percolation threshold with MWCNTs' rotation and translation around a growing bubble in conductive polymer composite foams, Compos. Sci. Technol., 199, 108345, 10.1016/j.compscitech.2020.108345 Cesano, 2016, Relationship between morphology and electrical properties in PP/MWCNT composites: processing-induced anisotropic percolation threshold, Mater. Chem. Phys., 180, 284, 10.1016/j.matchemphys.2016.06.009 Hrach, 2004, Electrical and morphological properties of composite films near the percolation threshold: models of composite structures, Thin Solid Films, 459, 174, 10.1016/j.tsf.2003.12.133 Shahzad, 2018, Segregated reduced graphene oxide polymer composite as a high performance electromagnetic interference shield, Res. Chem. Intermed., 44, 4707, 10.1007/s11164-018-3274-7 Logakis, 2011, Highly conducting poly(methyl methacrylate)/carbon nanotubes composites: investigation on their thermal, dynamic-mechanical, electrical and dielectric properties, Compos. Sci. Technol., 71, 854, 10.1016/j.compscitech.2011.01.029