Universal behavior for electromagnetic interference shielding effectiveness of polymer based composite materials
Tài liệu tham khảo
Paul, 2006
Schulz, 1988, Shielding theory and practice, IEEE Trans. Electromagn C., 30, 187, 10.1109/15.3297
Han, 2020, Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding, ACS Nano, 14, 5008, 10.1021/acsnano.0c01312
Chung, 2020, Materials for electromagnetic interference shielding, Mater. Chem. Phys., 255, 123587, 10.1016/j.matchemphys.2020.123587
Al-Saleh, 2013, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study, Carbon, 60, 146, 10.1016/j.carbon.2013.04.008
Thomassin, 2013, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials, Mater. Sci. Eng. R Rep., 74, 211, 10.1016/j.mser.2013.06.001
Chung, 2001
Qin, 2012, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles, J. Appl. Phys., 111, 10.1063/1.3688435
Ganguly, 2018, Polymer nanocomposites for electromagnetic interference shielding: a review, J. Nanosci. Nanotechnol., 18, 7641, 10.1166/jnn.2018.15828
Al-Saleh, 1980, Carbon nanofiber/polyethylene nanocomposite: processing behavior, microstructure and electrical properties, Mater. Des., 52, 128, 10.1016/j.matdes.2013.05.038
Keith Jason, 2005, Shielding effectiveness density theory for carbon fiber/nylon 6,6 composites, Polym. Compos., 26, 671, 10.1002/pc.20139
Lee, 2019, Low percolation 3D Cu and Ag shell network composites for EMI shielding and thermal conduction, Compos. Sci. Technol., 182, 107778, 10.1016/j.compscitech.2019.107778
Ju, 2020, Lightweight multifunctional polypropylene/carbon nanotubes/carbon black nanocomposite foams with segregated structure, ultralow percolation threshold and enhanced electromagnetic interference shielding performance, Compos. Sci. Technol., 193, 108116, 10.1016/j.compscitech.2020.108116
Ma, 2020, Stretchable conductors of multi-walled carbon nanotubes (MWCNTs) filled thermoplastic vulcanizate (TPV) composites with enhanced electromagnetic interference shielding performance, Compos. Sci. Technol., 195, 108195, 10.1016/j.compscitech.2020.108195
Mamunya, 2019, Influence of conductive nano- and microfiller distribution on electrical conductivity and EMI shielding properties of polymer/carbon composites, Compos. Sci. Technol., 170, 51, 10.1016/j.compscitech.2018.11.037
Kirkpatrick, 1973, Percolation and conduction, Rev. Mod. Phys., 45, 574, 10.1103/RevModPhys.45.574
Balberg, 1984, Percolation thresholds in the three-dimensional sticks system, Phys. Rev. Lett., 52, 1465, 10.1103/PhysRevLett.52.1465
Bauhofer, 2009, A review and analysis of electrical percolation in carbon nanotube polymer composites, Compos. Sci. Technol., 69, 1486, 10.1016/j.compscitech.2008.06.018
Shi, 2019, Percolation behavior of electromagnetic interference shielding in polymer/multi-walled carbon nanotube nanocomposites, Compos. Sci. Technol., 170, 70, 10.1016/j.compscitech.2018.11.033
Shahzad, 2016, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science, 353, 1137, 10.1126/science.aag2421
McClory, 2010, Electrical and rheological percolation of PMMA/MWCNT nanocomposites as a function of CNT geometry and functionality, Eur. Polym. J., 46, 854, 10.1016/j.eurpolymj.2010.02.009
Das, 2009, Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding, Polym. Eng. Sci., 49, 1627, 10.1002/pen.21384
Al-Saleh, 2013, X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites, J. Phys. Appl. Phys., 46, 10.1088/0022-3727/46/3/035304
Al-Ghamdi, 2016, Correlation between electrical conductivity and microwave shielding effectiveness of natural rubber based composites, containing different hybrid fillers obtained by impregnation technology, Mater. Sci. Appl., 7, 496
Al-Saleh, 2008, Electromagnetic interference (EMI) shielding effectiveness of PP/PS polymer blends containing high structure carbon black, Macromol. Mater. Eng., 293, 621, 10.1002/mame.200800060
Goyal, 2013, Cost-efficient high performance polyetheretherketone/expanded graphite nanocomposites with high conductivity for EMI shielding application, Mater. Chem. Phys., 142, 195, 10.1016/j.matchemphys.2013.07.005
Jou, 2001, Electromagnetic shielding of nylon-66 composites applied to laser modules, J. Electron. Mater., 30, 1287, 10.1007/s11664-001-0113-0
Wilson, 1988, Techniques for measuring the electromagnetic shielding effectiveness of materials. I. Far-field source simulation, IEEE Trans. Electromagn C., 30, 239, 10.1109/15.3302
Sun, 2016, Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies, Materials, 9, 231, 10.3390/ma9040231
Al-Saleh, 2009, A review of vapor grown carbon nanofiber/polymer conductive composites, Carbon, 47, 2, 10.1016/j.carbon.2008.09.039
Haddad, 2020, Low frequency relation between transfer impedance and shielding effectiveness of braided cables and grid shields, IEEE transaction on electromagnetic compatibility, IEEE Trans. Electromagn C., 62, 2423, 10.1109/TEMC.2019.2960163
Al-Saleh, 2015, Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites, Synth. Met., 205, 78, 10.1016/j.synthmet.2015.03.032
Chou, 2005, Effect of mixing process on electromagnetic interference shielding effectiveness of nickel/acrylonitrile–butadiene–styrene composites, J. Appl. Polym. Sci., 97, 128, 10.1002/app.21740
Yoo, 2014, Effects of hybrid fillers on the electromagnetic interference shielding effectiveness of polyamide 6/conductive filler composites, J. Mater. Sci., 49, 1701, 10.1007/s10853-013-7855-y
Li, 2018, Highly filled biochar/ultra-high molecular weight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding, Compos. B Eng., 153, 277, 10.1016/j.compositesb.2018.07.049
Das, 2001, Electromagnetic interference shielding effectiveness of conductive carbon black and carbon fiber‐filled composites based on rubber and rubber blends, Adv. Polym. Technol., 20, 226, 10.1002/adv.1018
Zhang, 2018, Effect of hierarchical structure on electrical properties and percolation behavior of multiscale composites modified by carbon nanotube coating, Compos. Sci. Technol., 164, 160, 10.1016/j.compscitech.2018.05.037
Wang, 2020, Theoretical modeling and experimental verification of percolation threshold with MWCNTs' rotation and translation around a growing bubble in conductive polymer composite foams, Compos. Sci. Technol., 199, 108345, 10.1016/j.compscitech.2020.108345
Cesano, 2016, Relationship between morphology and electrical properties in PP/MWCNT composites: processing-induced anisotropic percolation threshold, Mater. Chem. Phys., 180, 284, 10.1016/j.matchemphys.2016.06.009
Hrach, 2004, Electrical and morphological properties of composite films near the percolation threshold: models of composite structures, Thin Solid Films, 459, 174, 10.1016/j.tsf.2003.12.133
Shahzad, 2018, Segregated reduced graphene oxide polymer composite as a high performance electromagnetic interference shield, Res. Chem. Intermed., 44, 4707, 10.1007/s11164-018-3274-7
Logakis, 2011, Highly conducting poly(methyl methacrylate)/carbon nanotubes composites: investigation on their thermal, dynamic-mechanical, electrical and dielectric properties, Compos. Sci. Technol., 71, 854, 10.1016/j.compscitech.2011.01.029