Unitary Representations of the Wigner Group ISL(2, ℂ) and A Two-Spinor Description of Massive Particles With An Arbitrary Spin
Tóm tắt
Từ khóa
Tài liệu tham khảo
E. P. Wigner, “On unitary representations of the inhomogeneous Lorentz group,” Ann. Math., 40, 149–204 (1939)
V. Bargmann and E. P. Wigner, “Group theoretical discussion of relativistic wave equations,” Proc. Nat. Acad. Sci. USA, 34, 211–223 (1948).
P. A. M. Dirac, “Relativistic wave equations,” Proc. Roy. Soc. London. Ser. A, 155, 447–459 (1936).
M. Fierz, “Über den Drehimpuls von Teilichen mit Ruhemasse null und beliebigem Spin,” Helvetica Phys. Acta, 13, No. 12, 45–60 (1940).
M. Fierz and W. Pauli, “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field,” Proc. Roy. Soc. London. Ser. A, 173, 211–232 (1939).
I. P. Isaev and V. A. Rubakov, Theory of Groups and Symmetries: Finite Groups. Groups, and Lie Algebras [in Russian], URSS, Moscow (2018).
S. Weinberg, “Feynman rules for any spin,” Phys. Rev., 133, B1318–B1332 (1964); “Feynman rules for any spin: II. Massless particles,” Phys. Rev., 134, B882–B896 (1964).
Yu. V. Novozhilov, Introduction to Elementary Particle Theory [in Russian], Nauka, Moscow (1972); English transl. (Intl. Ser. Monogr. Nat. Phil., Vol. 78), Pergamon, Oxford (1975).
J. A. de Azcárraga, A. Frydryszak, J. Lukierski, and C. Miquel-Espanya, “Massive relativistic particle model with spin from free two-twistor dynamics and its quantization,” Phys. Rev. D, 73, 105011 (2006).
J. A. Azcárraga, S. Fedoruk, J. M. Izquierdo, and J. Lukierski, “Two-twistor particle models and free massive higher spin fields,” JHEP, 1504, 10 (2015).
R. E. Behrends and C. Fronsdal, “Fermi decay for higher spin particles,” Phys. Rev., 106, 345–353 (1957).
N. N. Bogolyubov, A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory [in Russian], Nauka, Moscow (1987); English transl. (Math. Phys. Appl. Math., Vol. 10), Kluwer, Dordrecht (1990).
I. L. Buchbinder and S. M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity: Or a Walk Through Superspace, IOP, Bristol (1995).
Ya. B. Rumer and A. I. Fet, Group Theory and Quantized Fields [in Russian], Nauka, Moscow (1977).
R. Penrose and M. A. H. MacCallum, “Twistor theory: An approach to the quantization of fields and space–time,” Phys. Rep., 6, 241–315 (1973).
K. P. Tod, “Some symplectic forms arising in twistor theory,” Rep. Math. Phys., 11, 339–346 (1977).
Z. Perjés, “Twistor variables of relativistic mechanics,” Phys. Rev. D, 11, 2031–2041 (1975).
L. P. Hughston, Twistors and Particles (Lect. Notes Phys., Vol. 97), Springer, Berlin (1979).
A. Bette, “On a pointlike relativistic massive and spinning particle,” J. Math. Phys., 25, 2456–2460 (1984)
A. Bette,“Directly interacting massless particles—a twistor approach,” J. Math. Phys., 37, 1724–1734 (1996).
A. Bette, J. A. de Azcárraga, J. Lukierski, and C. Miquel-Espanya, “Massive relativistic free fields with Lorentz spins and electric charges,” Phys. Lett. B, 595, 491–497 (2004).
S. Fedoruk and J. Lukierski, “Massive twistor particle with spin generated by Souriau–Wess–Zumino term and its quantization,” Phys. Lett. B, 733, 309–315 (2014).
L. C. Biedenharn, H. W. Braden, P. Truini, and H. van Dam, “Relativistic wavefunctions on spinor spaces,” J. Phys. A, 21, 3593–3610 (1988).
C. Fronsdal, “On the theory of higher spin fields,” Nuovo Cimento, 9, Supp. 2, 416–443 (1958).
R. Penrose and W. Rindler, Spinors and Space–Time, Vol. 2, Spinor and Twistor Methods in Space–Time Geometry, Cambridge Univ. Press, Cambridge (1986).
R. Penrose, “Zero rest-mass fields including gravitation: Asymptotic behaviour,” Proc. Roy. Soc. London. Ser. A, 284, 159–203 (1965).
E. Witten, “Perturbative gauge theory as a string theory in twistor space,” Commun. Math. Phys., 252, 189–258 (2004).
H. Elvang and Y. -T. Huang, Scattering Amplitudes in Gauge Theory and Gravity, Cambridge Univ. Press, Cambridge (2015).