Unitals with many involutory translations
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry - Tập 64 - Trang 287-297 - 2022
Tóm tắt
If every point of a unital is fixed by a non-trivial translation and at least one translation has order two then the unital is classical (i.e., hermitian).
Tài liệu tham khảo
Al-Azemi, A., Betten, A., Betten, D. (2014) Unital designs with blocking sets. Discrete Appl. Math. 163(part 2):102–112. https://doi.org/10.1016/j.dam.2013.02.023
Aschbacher, M.: A condition for the existence of a strongly embedded subgroup. Proc. Am. Math. Soc. 38, 509–511 (1973). https://doi.org/10.2307/2038941
Barwick, S.G., Ebert, G.: Springer Monographs in Mathematics, Unitals in Projective Planes (2008). https://doi.org/10.1007/978-0-387-76366-8
Coulter, R.S., Matthews, R.W.: Planar functions and planes of Lenz–Barlotti class II. Des. Codes Cryptogr. 10(2), 167–184 (1997). https://doi.org/10.1023/A:1008292303803
de Resmini, M.J., Hamilton, N.: Hyperovals and unitals in Figueroa planes. Eur. J. Combin. 19(2), 215–220 (1998). https://doi.org/10.1006/eujc.1997.0166
Dembowski, P.: Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol 44. Springer-Verlag, Berlin (1968). https://doi.org/10.1007/978-3-642-62012-6
Dempwolff, U.: \({\rm PSL}(3, q)\) on projective planes of order \(q^3\). Geom. Dedicata 18(1), 101–112 (1985a). https://doi.org/10.1007/BF00221208
Dempwolff, U.: (1985b) On the automorphism group of planes of Figueroa type. Rend. Sem. Mat. Univ. Padova 74:59–62. http://www.numdam.org/item?id=RSMUP_1985__74__59_0
Figueroa, R.: A family of not \((V,\, l)\)-transitive projective planes of order \(q^{3}\), \(q{\lnot \equiv }1~(mod \; 3)\) and \(q>2\). Math. Z. 181(4), 471–479 (1982). https://doi.org/10.1007/BF01182385
Gorenstein, D.: Finite groups, 2nd edn. Chelsea Publishing Co., New York (1980)
Grundhöfer, T.: A synthetic construction of the Figueroa planes. J. Geom. 26(2), 191–201 (1986). https://doi.org/10.1007/BF01227843
Grüning, K.: A class of unitals of order \(q\) which can be embedded in two different planes of order \(q^2\). J. Geom. 29(1), 61–77 (1987). https://doi.org/10.1007/BF01234988
Grundhöfer, T., Krinn, B., Stroppel, M.J.: Non-existence of isomorphisms between certain unitals. Des. Codes Cryptogr. 60(2), 197–201 (2011). https://doi.org/10.1007/s10623-010-9428-2
Grundhöfer, T., Stroppel, M.J., Van Maldeghem, H.: Unitals admitting all translations. J. Combin. Des. 21(10), 419–431 (2013). https://doi.org/10.1002/jcd.21329
Grundhöfer, T., Stroppel, M.J., Van Maldeghem, H.: A non-classical unital of order four with many translations. Discrete Math. 339(12), 2987–2993 (2016). https://doi.org/10.1016/j.disc.2016.06.008
Grundhöfer, T., Stroppel, MJ., Van Maldeghem, H.: (2021-11-01) Finite subunitals of the hermitian unitals J. Geom., to appear (2021a). arxiv:2201.02701
Grundhöfer, T., Stroppel, MJ., Van Maldeghem, H.: Moufang sets generated by translations in unitals. J. Combin. Des. 30(2), 91–104 (2021b). https://doi.org/10.1002/jcd.21813 (2021b). arxiv:2008.11445
Hering, C.: On subgroups with trivial normalizer intersection. J. Algebra 20, 622–629 (1972). https://doi.org/10.1016/0021-8693(72)90075-0
Hering, C.: On projective planes of type VI. In: Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo II. Accademia Nazionale dei Lincei, Rome, p 29–53, tenuto a Roma, 3–15 settembre 1973, Atti dei Convegni Lincei, No. 17 (1976)
Hering, C., Schaeffer, HJ.: On the new projective planes of R. Figueroa. In: Combinatorial theory (Schloss Rauischholzhausen, 1982), Lecture Notes in Math., vol 969. Springer, Berlin-New York, p 187–190 (1982). https://doi.org/10.1007/BFb0062982
Higman, D.G., McLaughlin, J.E.: Rank \(3\) subgroups of finite symplectic and unitary groups. J. Reine. Angew. Math. 218, 174–189 (1965). https://doi.org/10.1515/crll.1965.218.174
Hughes, D.R., Piper, F.C.: Projective Planes, Graduate Texts in Mathematics, vol. 6. Springer, New York (1973)
Hui, A.M.W., Wong, P.P.W.: Non-classical polar unitals in finite Figueroa planes. J. Geom. 103(2), 263–273 (2012). https://doi.org/10.1007/s00022-012-0121-7
Hui, A.M.W., Law, H.F., Tai, Y.K., et al.: Non-classical polar unitals in finite Dickson semifield planes. J. Geom. 104(3), 469–493 (2013). https://doi.org/10.1007/s00022-013-0174-2
Kantor, W.M.: Homogeneous designs and geometric lattices. J. Combin. Theory Ser. A 38(1), 66–74 (1985). https://doi.org/10.1016/0097-3165(85)90022-6
Knarr, N., Stroppel, M.J.: Polarities and unitals in the Coulter–Matthews planes. Des. Codes Cryptogr. 55(1), 9–18 (2010). https://doi.org/10.1007/s10623-009-9326-7
Krčadinac, V., Vlahović, R.: New quasi-symmetric designs by the Kramer–Mesner method. Discrete Math. 339(12), 2884–2890 (2016). https://doi.org/10.1016/j.disc.2016.05.030
Krčadinac, V., Nakić, A., Pavčević, M.O.: The Kramer–Mesner method with tactical decompositions: some new unitals on 65 points. J. Combin. Des. 19(4), 290–303 (2011). https://doi.org/10.1002/jcd.20277
Lüneburg, H.: Translation Planes. Springer, Berlin (1980)
Möhler, V. Automorphisms of (affine) SL(2,q)-unitals. Innov. Incid. Geom. to appear (2021a) . arxiv:2012.10116
Möhler, V.: Parallelisms and translations of (affine) SL(2, q)-unitals. J. Geom. 112, 44 (2021b). https://doi.org/10.1007/s00022-021-00611-5
Möhler, V.: Three affine SL(2,8)-unitals. Beitr. Algebra Geom. to appear (2021c). arxiv:2012.10134
O’Nan, M.E.: Automorphisms of unitary block designs. J. Algebra 20, 495–511 (1972). https://doi.org/10.1016/0021-8693(72)90070-1
Tai, Y.K., Wong, P.P.W.: On the structure of the Figueroa unital and the existence of O’Nan configurations. Discrete Math. 330, 41–50 (2014). https://doi.org/10.1016/j.disc.2014.04.012
Taylor, D.E.: The geometry of the classical groups, Sigma Series in Pure Mathematics, vol. 9. Heldermann, Berlin (1992)