Uniqueness of travelling waves for nonlocal monostable equations
Tóm tắt
We consider a nonlocal analogue of the Fisher-KPP equation
Từ khóa
Tài liệu tham khảo
Atkinson, C., 1976, Deterministic epidemic waves, Math. Proc. Cambridge Philos. Soc., 80, 315, 10.1017/S0305004100052944
Bates, Peter W., 1999, A discrete convolution model for phase transitions, Arch. Ration. Mech. Anal., 150, 281, 10.1007/s002050050189
Bramson, Maury, 1983, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc., 44, iv+190, 10.1090/memo/0285
Brown, K. J., 1977, Deterministic epidemic waves of critical velocity, Math. Proc. Cambridge Philos. Soc., 81, 431, 10.1017/S0305004100053494
Chen, Xinfu, 2003, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann., 326, 123, 10.1007/s00208-003-0414-0
Diekmann, Odo, 1978, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal., 2, 721, 10.1016/0362-546X(78)90015-9
Ellison, William, 1985, Prime numbers
Fife, Paul C., 1979, Mathematical aspects of reacting and diffusing systems, 28, 10.1007/978-3-642-93111-6
1988, Dynamics of curved fronts
Schumacher, Konrad, 1980, Travelling-front solutions for integro-differential equations. I, J. Reine Angew. Math., 316, 54, 10.1515/crll.1980.316.54
Weinberger, H. F., 1978, Asymptotic behavior of a model in population genetics, 47
Sispanov, Sergio, 1939, Generalización del teorema de Laguerre, Bol. Mat., 12, 113
Wu, Jianhong, 2001, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam. Differential Equations, 13, 651, 10.1023/A:1016690424892