Uniqueness of meromorphic mappings partially shared hypersurfaces
Tóm tắt
Từ khóa
#Hypersurfaces #Meromorphic mapping #Nevanlinna theory #Uniqueness theoremTài liệu tham khảo
Cao, T. B, Yi, H. X, On the multiple values and uniqueness of meromorphic functions sharing small functions as targets, Bull. Korean Math. Soc, 44(4) (2007), 631-640.
Cartan, H., Sur les zeros des combinaisions linearires de p fonctions holomorpes donnees, Mathematica (Cluj), 7 (1933), 80-103.
Chen, T. G, Chen, K. Y, Tsai, Y. L, Some generalizations of Nevanlinna’s five value theorem, Kodai Math. J, 30(3) (2007), 438-444.
Chen, Y., Yan, Q., A note on uniqueness problem for meromorphic mappings with 2N + 3 hyperplanes, Sci. China Math, 53(10) (2010), 2657-2663.
Dethloff, G., Tan, T. V, A Uniqueness Theorem for Meromorphic Maps with Moving Hypersurfaces, Publ. Math. Debrecen, 78 (2011), 347-357.
Dulock, M., Ru, M., A uniqueness theorem for holomorphic curves into encountering hypersurfaces in projective space, Complex Variables and Elliptic Equations, 53 (2008), 797-802.
Lahiri, I., Pal, R., A note on Nevanlinna’s Five Value Theorem, Bull. Korean Math. Soc, 52(2) (2015), 345-350.
Fujimoto, H., The uniqueness problem of meromorphic maps into complex projective spaces, Nagoya Math. J, 58 (1975), 1-23.
Gopalakrishna, H. S, Bhoosnurmath, S. S, Uniqueness theorems for meromorphic functions, Math. Scand, 39(1) (1976), 125-130.
Hu, P. C, Li, P., Yang, C. C, Unicity of meromorphic mappings, Kluwer, 2003.
Phuong, H. T, On unique range sets for holomorphic maps sharing hypersurfaces without counting multiplicity, Acta. Math. Vietnamica, 34(3) (2009), 351-360.
Quang, S. D, An, D. P, Second Main Theorem and unicity of meromorphic mappings for hypersurfaces in projective varieties, Acta Mathematica Vietnamica, 42(3) (2017), 455-470.
Quang, S. D, An, D. P, Second Main Theorems for meromorphic mappings with moving hypersurfaces and a uniqueness problem, Computational Methods and Function Theory, 17(3) (2017), 445-461.
Ru, M., A defect relation for holomorphic curves intersecting hypersurfaces, Amer. Journal of Math, 126 (2004), 215-226.
Smiley, L., Geometry conditions for unicity of holomorphic curves, Contemp. Math, 25 (1983), 149-154.