Uniqueness of Kähler-Ricci solitons

International Press of Boston - Tập 184 Số 2 - Trang 271-305 - 2000
Gang Tian1, Xiaohua Zhu2
1Department of Mathematics, Massachusetts Institute of Technology
2School of Mathematical Sciences, Peking University

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alexander, H. J. &Taylor, B. A., Comparison of two capacities in C n .Math. Z., 186 (1984), 407–417.

Aubin, T., Réduction du cas positif de l'équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d'une inégalité.J. Funct. Anal., 57 (1984), 143–153.

Bedford, E., Survey of pluri-potential theory, inSeveral Complex Variables (Stockholm, 1987/88), pp. 48–97. Math. Notes, 38. Princeton Univ. Press, Princeton, NJ, 1993.

Bando, S. &Mabuchi, T., Uniqueness of Einstein-Kähler metrics modulo connected group actions, inAlgebraic Geometry (Sendai, 1985), pp. 11–40. Adv. Stud. Pure Math., 10. North-Holland, Amsterdam-New York, 1987.

Bedford, E. &Taylor, B. A., The Dirichlet problem for a complex Monge-Ampère equation.Invent. Math., 37 (1976), 1–44.

—, A new capacity for plurisubharmonic functions.Acta Math., 149 (1982), 1–40.

Cao, H.-D., Existence of gradient Kähler-Ricci solitons, inElliptic and Parabolic Methods in Geometry (Minneapolis, MN, 1994), pp. 1–16. AK Peters, Wellesley, MA, 1996.

—, Limits of solutions to the Kähler-Ricci flow.J. Differential Geom., 45 (1997), 257–272.

Calabi, E., Extremal Kähler metrics, II, inDifferential Geometry and Complex Analysis, pp. 95–114. Springer-Verlag, Berlin-New York, 1985.

Futaki, A., An obstruction to the existence of Einstein Kähler metrics.Invent. Math., 73 (1983), 437–443.

—,Kähler-Einstein Metrics and Integral Invariants. Lecture Notes in Math., 1314. Springer-Verlag, Berlin-New York, 1988.

Futaki, A. &Mabuchi, T., Bilinear forms and extremal Kähler vector fields associated with Kähler classes.Math. Ann., 301 (1995), 199–210.

Hamilton, R. S., Eternal solutions to the Ricci flow.J. Differential Geom., 38 (1993), 1–11.

Koiso, N., On rationally symmetric Hamilton's equation for Kähler-Einstein metrics, inRecent Topics in Differential and Analytic Geometry, pp. 327–337. Adv. Stud. Pure Math., 18-I. Academic Press, Boston, MA, 1990.

Kołodziej, S., The complex Monge-Ampère equation.Acta Math., 180 (1998), 69–117.

Tian, G., Kähler-Einstein metrics on algebraic manifolds, inTranscendental Methods in Algebraic Geometry (Cetraro, 1994), pp. 143–185. Lecture Notes in Math., 1646. Springer-Verlag, Berlin, 1996.

— Kähler-Einstein metrics with positive scalar curvature.Invent. Math., 130 (1997), 1–37.

Yau, S. T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I.Comm. Pure Appl. Math., 31 (1978), 339–411.

Zhu, X. H., Ricci soliton-typed equations on compact complex manifolds withc 1(M)>0. To appear inJ. Geom. Anal., 10 (2000).