Uniqueness of Kähler-Ricci solitons
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alexander, H. J. &Taylor, B. A., Comparison of two capacities in C n .Math. Z., 186 (1984), 407–417.
Aubin, T., Réduction du cas positif de l'équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d'une inégalité.J. Funct. Anal., 57 (1984), 143–153.
Bedford, E., Survey of pluri-potential theory, inSeveral Complex Variables (Stockholm, 1987/88), pp. 48–97. Math. Notes, 38. Princeton Univ. Press, Princeton, NJ, 1993.
Bando, S. &Mabuchi, T., Uniqueness of Einstein-Kähler metrics modulo connected group actions, inAlgebraic Geometry (Sendai, 1985), pp. 11–40. Adv. Stud. Pure Math., 10. North-Holland, Amsterdam-New York, 1987.
Bedford, E. &Taylor, B. A., The Dirichlet problem for a complex Monge-Ampère equation.Invent. Math., 37 (1976), 1–44.
Cao, H.-D., Existence of gradient Kähler-Ricci solitons, inElliptic and Parabolic Methods in Geometry (Minneapolis, MN, 1994), pp. 1–16. AK Peters, Wellesley, MA, 1996.
Calabi, E., Extremal Kähler metrics, II, inDifferential Geometry and Complex Analysis, pp. 95–114. Springer-Verlag, Berlin-New York, 1985.
Futaki, A., An obstruction to the existence of Einstein Kähler metrics.Invent. Math., 73 (1983), 437–443.
—,Kähler-Einstein Metrics and Integral Invariants. Lecture Notes in Math., 1314. Springer-Verlag, Berlin-New York, 1988.
Futaki, A. &Mabuchi, T., Bilinear forms and extremal Kähler vector fields associated with Kähler classes.Math. Ann., 301 (1995), 199–210.
Koiso, N., On rationally symmetric Hamilton's equation for Kähler-Einstein metrics, inRecent Topics in Differential and Analytic Geometry, pp. 327–337. Adv. Stud. Pure Math., 18-I. Academic Press, Boston, MA, 1990.
Tian, G., Kähler-Einstein metrics on algebraic manifolds, inTranscendental Methods in Algebraic Geometry (Cetraro, 1994), pp. 143–185. Lecture Notes in Math., 1646. Springer-Verlag, Berlin, 1996.
Yau, S. T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I.Comm. Pure Appl. Math., 31 (1978), 339–411.