Tính duy nhất và ổn định của nghiệm cho bài toán Cauchy của các phương trình parabol degenerate quasilinear

Science China Mathematics - Tập 48 - Trang 583-593 - 2005
Junning Zhao1, Huashui Zhan2
1Department of Mathematics, Xiamen University, Xiamen, China
2School of Science, Jimei University, Xiamen, China

Tóm tắt

Tính duy nhất và sự tồn tại của các nghiệm BV cho bài toán Cauchy có dạng $$\frac{{\partial u}}{{\partial t}} = \Delta A\left( u \right) + \sum\limits_{i = 1}^N {\frac{{\partial b_i \left( u \right)}}{{\partial x_i }},A'\left( u \right) \geqslant 0,u\left( {x,0} \right) = u_0 } $$ được chứng minh.

Từ khóa


Tài liệu tham khảo

Oleinik, O. A., Samokhin,V. N., Mathematical Models in Boundary Layer Theorem, Boca Raton; Chapman and Hall/CRC, 1999. Volpert, A.I., Hudjaev, S. I., On the problem for quasilinear degenerate parabolic equations of second order (Russian), Mat.Sb., 1967, 3: 374–396. Zhao, J., Uniqueness of solutions of quasilinear degenerate parabolic equations, Northeastern Math. J., 1985, 1(2): 153–165. Wu, Z., Yin, J., Some properties of functions in BVx and their applications to the uniqueness of solutions for degenerate quasilinear parabolic equations, Northeastern Math. J., 1989,5(4): 395–422. Brezis, H., Crandall, M. G., Uniqueness of solutions of the initial value problem for {ie593-01}, J. Math.Pures et Appl., 1979, 58: 153–163. Kružkov, S. N., First order quasilinear equations in several independent varaiables, Math. USSR- Sb., 1970, 10: 217–243. Cockburn, B., Gripenberg, G., Continious dependence on the nonlinearities of solutions of degenerate parabolic equations, J. Diff. Equatiaons, 1999, 151: 231–251. Volpert, A.I., BV space and quasilinear equations, Mat. Sb., 1967, 73: 255–302. Volpert, A.I., Hudjave, S. I., Analysis of class of discontinuous functions and the equations of mathematical physics (Russian), Izda. Nauka Moskwa, 1975. Evans, L.C., Weak convergence methods for nonlinear partial differential equations, Conference Board of the Mathematical Sciences, Regional Conferences Series in Mathematics Number 74, 1998. Wu, Z., Zhao, J., Yin, J., et al., Nonlinear Diffusion Equations, Singapore: Word Scientific, 2001.