Unique Function of Kinesin Kif5A in Localization of Mitochondria in Axons

Journal of Neuroscience - Tập 34 Số 44 - Trang 14717-14732 - 2014
Philip D. Campbell1, Kimberle Shen2, Matthew R. Sapio3, Thomas D. Glenn2, William S. Talbot2, Florence L. Marlow1,3
11Departments of Developmental and Molecular Biology, and
23Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305
32Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, and

Tóm tắt

Mutations in Kinesin proteins (Kifs) are linked to various neurological diseases, but the specific and redundant functions of the vertebrate Kifs are incompletely understood. For example, Kif5A, but not other Kinesin-1 heavy-chain family members, is implicated in Charcot-Marie-Tooth disease (CMT) and Hereditary Spastic Paraplegia (HSP), but the mechanism of its involvement in the progressive axonal degeneration characteristic of these diseases is not well understood. We report that zebrafishkif5Aamutants exhibit hyperexcitability, peripheral polyneuropathy, and axonal degeneration reminiscent of CMT and HSP. Strikingly, althoughkif5genes are thought to act largely redundantly in other contexts, and zebrafish peripheral neurons express fivekif5genes,kif5Aamutant peripheral sensory axons lack mitochondria and degenerate. We show that this Kif5Aa-specific function is cell autonomous and is mediated by its C-terminal tail, as only Kif5Aa and chimeric motors containing the Kif5Aa C-tail can rescue deficits. Finally, concurrent loss of thekinesin-3,kif1b, or its adaptorkbp, exacerbates axonal degeneration via a nonmitochondrial cargo common to Kif5Aa. Our results shed light on Kinesin complexity and reveal determinants of specific Kif5A functions in mitochondrial transport, adaptor binding, and axonal maintenance.

Từ khóa


Tài liệu tham khảo

10.1371/journal.pone.0054166

10.1038/nmeth.2434

10.1523/JNEUROSCI.2601-12.2012

10.1016/j.neuroscience.2004.11.031

10.1111/j.1528-1167.2007.01075.x

10.1242/dmm.010090

10.1016/0143-4160(88)90036-X

10.1007/s10048-005-0027-8

10.1074/jbc.M111.236018

10.1074/jbc.M409095200

Buss, 2001, Synaptic drive to motoneurons during fictive swimming in the developing zebrafish, J Neurophysiol, 86, 197, 10.1152/jn.2001.86.1.197

10.1016/j.gep.2013.05.002

10.1083/jcb.201302040

10.1038/nrn1788

10.1038/13001

10.1111/j.1399-0004.2011.01717.x

10.1111/j.1365-2990.2004.00587.x

10.1371/journal.pgen.1003303

10.1212/01.WNL.0000138731.60693.D2

10.1016/j.jns.2012.03.025

10.1038/13008

10.1002/humu.20920

10.1038/35010525

10.1021/bi8022575

10.1101/gr.143000

10.1007/s00234-005-1415-3

10.1016/j.tcb.2013.08.007

10.1038/nrm2774

10.1016/j.neuron.2010.09.039

10.1016/j.neuron.2013.10.050

10.1111/j.1471-4159.1991.tb02061.x

Kanai, 2000, KIF5C, a novel neuronal kinesin enriched in motor neurons, J Neurosci, 20, 6374, 10.1523/JNEUROSCI.20-17-06374.2000

10.1007/s10048-012-0324-y

10.1177/1073858412451655

10.1038/nature11992

10.1002/dvdy.21343

10.1093/bioinformatics/btm404

10.1242/dev.012377

10.1038/ng.376

10.1093/nar/gkt376

10.1523/JNEUROSCI.0223-06.2006

10.1073/pnas.111145398

10.1242/dev.048645

10.1016/j.neuron.2012.10.012

10.1016/0092-8674(94)90012-4

10.1046/j.1365-313X.1998.00124.x

10.1242/dev.046425

10.1002/dneu.22049

10.1172/JCI37537

10.1073/pnas.90.19.9181

10.1523/JNEUROSCI.1327-12.2012

10.1038/ng.2613

10.1016/j.febslet.2013.09.049

10.1086/344210

10.1073/pnas.0808953105

10.1002/gene.20196

10.1016/0092-8674(91)90264-Y

10.1136/jnnp.2007.137596

10.1101/cshperspect.a011304

10.1038/nrg3141

10.1074/jbc.M600522200

10.1016/S0092-8674(00)81459-2

10.1097/WCO.0b013e328364c04b

10.1016/j.neuron.2012.11.027

10.1002/dvdy.21354

10.1016/S0076-6879(00)28419-X

10.1083/jcb.201108111

10.1093/bioinformatics/btp033

Westerfield M (1995) The zebrafish book: a guide for the laboratory use of Zebrafish (Danio rerio) (University of Oregon, Eugene, OR), Ed 3.

10.1186/1471-2121-6-35

10.1083/jcb.200301026

10.1016/S0092-8674(01)00363-4