Unilateral dynamic contact of von Kármán plates with singular memory
Tóm tắt
The solvability of the contact problem is proved provided the plate is simply supported. The singular memory material is assumed. This makes it possible to get a priori estimates important for the strong convergence of gradients of velocities of solutions to the penalized problem.
Tài liệu tham khảo
I. Bock, J. Jarušek: Unilateral dynamic contact of viscoelastic von Kármán plates. Adv. Math. Sci. Appl. 16 (2006), 175–187.
I. Bock, J. Lovíšek: On unilaterally supported viscoelastic von Kármán plates with a long memory. Math. Comput. Simul. 61 (2003), 399–407.
I. Bock, J. Lovíšek: On a contact problem for a viscoelastic von Kármán plate and its semidiscretization. Appl. Math. 50 (2005), 203–217.
P. G. Ciarlet, P. Rabier: Les équations de von Kármán. Springer-Verlag, Berlin, 1980.
C. Eck, J. Jarušek, and M. Krbec: Unilateral contact problems. Variational Methods and Existence Theorems. Pure and Applied Mathematics No. 270. Chapman & Hall/CRC, Boca Raton-London-New York-Singapore, 2005.
J. Jarušek: Solvability of unilateral hyperbolic problems involving viscoelasticity via penalization. Proc. of “Conference EQUAM”, Varenna 1992 (R. Salvi, ed.). SAACM 3 (1993), 129–140.
J. Jarušek: Solvability of the variational inequality for a drum with a memory vibrating in the presence of an obstacle. Boll. Unione Mat. Ital. VII. Ser., A 8 (1994), 113–122.
J. Jarušek, J. V. Outrata: On sharp optimality conditions in control of contact problems with strings. Nonlinear Anal. 67 (2007), 1117–1128.
H. Koch, A. Stahel: Global existence of classical solutions to the dynamic von Kármán equations. Math. Methods Appl. Sci. 16 (1993), 581–586.
J. E. Muñoz Rivera, G. Perla Menzala: Decay rates of solutions to a von Kármán system for viscoelastic plates with memory. Q. Appl. Math. 57 (1999), 181–200.
J. Nečas: Les méthodes directes en théorie des équations elliptiques. Masson/Academia, Paris/Praha, 1967.
A. Oukit, R. Pierre: Mixed finite element for the linear plate problem: the Hermann-Miyoshi model revisited. Numer. Math. 74 (1996), 453–477