Các bộ tích phân thời gian đa quy mô chính xác đồng nhất cho các phương trình vi phân dao động bậc hai với dữ liệu đầu vào lớn

Springer Science and Business Media LLC - Tập 57 - Trang 649-683 - 2017
Xiaofei Zhao1
1IRMAR, Université de Rennes 1, Rennes, France

Tóm tắt

Chúng tôi áp dụng khai triển Fourier điều chế cho một lớp phương trình vi phân bậc hai bao gồm một phần tuyến tính dao động và một phần phi tuyến không dao động, với tổng năng lượng của hệ thống có thể không bị giới hạn khi tần số dao động tăng. Chúng tôi nhận xét về sự khác biệt giữa vấn đề mô hình này và các phương trình dao động có năng lượng bị giới hạn cổ điển. Dựa trên khai triển này, chúng tôi đề xuất các bộ tích phân thời gian đa quy mô để giải các ODE dưới hai trường hợp: tính phi tuyến là một đa thức hoặc các tần số trong phần tuyến tính là bội số nguyên của một tần số tổng quát duy nhất. Các phương pháp được đề xuất là rõ ràng và hiệu quả. Các phương pháp này đã được chứng minh từ cả hai phía lý thuyết và số để hội tụ với tốc độ bậc hai đồng nhất cho tất cả các tần số. So sánh với các tích phân mũ phổ biến trong tài liệu cũng được thực hiện.

Từ khóa

#phương trình vi phân bậc hai #tích phân thời gian đa quy mô #lý thuyết dao động #năng lượng không giới hạn #hội tụ bậc hai đồng nhất

Tài liệu tham khảo

Ariel, G., Engquist, B., Kim, S., Lee, Y., Tsai, R.: A multiscale method for highly oscillatory dynamical systems using a Poincaré map type technique. J. Sci. Comput. 54, 247–268 (2013) Ariel, G., Engquist, B., Tsai, R.: A multiscale method for highly oscillatory ordinary differential equations with resonance. Math. Comput. 78, 929–956 (2009) Bao, W., Cai, Y., Zhao, X.: A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 52, 2488–2511 (2014) Bao, W., Dong, X., Zhao, X.: An exponential wave integrator pseudospectral method for the Klein-Gordon-Zakharov system. SIAM J. Sci. Comput. 35, A2903–A2927 (2013) Bao, W., Dong, X., Zhao, X.: Uniformly correct multiscale time integrators for highly oscillatory second order differential equations. J. Math. Study 47, 111–150 (2014) Bao, W., Zhao, X.: A uniformly accurate (UA) multiscale time integrator Fourier pseoduspectral method for the Klein-Gordon-Schrödinger equations in the nonrelativistic limit regime. Numer. Math. to appear (2016). doi:10.1007/s00211-016-0818-x Bao, W., Zhao, X.: A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon-Zakharov system in the high-plasma-frequency limit regime. J. Comput. Phys. 327, 270–293 (2016) Calvo, M.P., Chartier, Ph, Murua, A., Sanz-Serna, J.M.: A stroboscopic numerical method for highly oscillatory problems. Numer. Anal. Multiscale Comput., Lecture Notes in Computational Science and Engineering 82, 71–85 (2012) Calvo, M.P., Chartier, Ph, Murua, A., Sanz-Serna, J.M.: Numerical experiments with the stroboscopic method. Appl. Numer. Math. 61, 1077–1095 (2011) Castella, F., Chartier, Ph, Méhats, F., Murua, A.: Stroboscopic averaging for the nonlinear Schrödinger equation. Found. Comput. Math. 15, 519–559 (2015) Chartier, Ph., Lemou, M., Méhats, F.: Highly-oscillatory evolution equations with multiple frequencies: averaging and numerics, preprint, hal-01281950 (2016) Chartier, Ph., Méhats, F., Thalhammer, M., Zhang, Y.: Convergence analysis of multi-revolution composition time-splitting pseudo-spectral methods for highly oscillatory differential equations of Schrödinger type, preprint (2016) Chartier, Ph, Makazaga, J., Murua, A., Vilmart, G.: Multi-revolution composition methods for highly oscillatory differential equations. Numer. Math. 128, 167–192 (2014) Chartier, Ph, Crouseilles, N., Lemou, M., Méhats, F.: Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear Schrödinger equations. Numer. Math. 129, 211–250 (2015) Condon, M., Deaño, A., Iserles, A.: On highly oscillatory problems arising in electronic engineering. ESAIM Math. Model. Numer. Anal. 43, 785–804 (2009) Condon, M., Deaño, A., Iserles, A.: On second order differential equations with highly oscillatory forcing terms. Proc. R. Soc. A 466, 1809–1828 (2010) Condon, M., Deaño, A., Gao, J., Iserles, A.: Asymptotic solvers for ordinary differential equations with multiple frequencies, University of Cambridge DAMTP Tech. Rep., NA2011/11 (2011) Condon, M., Iserles, A., Nørsett, S.P.: Differential equations with general highly oscillatory forcing terms. Proc. R. Soc. A 470 (2013). doi:10.1098/rspa.2013.0490 Cohen, D.: Conservation properties of numerical integrators for highly oscillatory Hamiltonian systems. IMA J. Numer. Anal. 26, 34–59 (2005) Cohen, D., Gauckler, L.: One-stage exponential integrators for nonlinear Schrödinger equations over long times. BIT 52, 877–903 (2012) Cohen, D., Hairer, E., Lubich, Ch.: Numerical energy conservation for multi-frequency oscillatory differential equations. BIT Numer. Math. 45, 287–305 (2005) Cohen, D., Hairer, E., Lubich, Ch.: Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations. Numer. Math. 110, 113–143 (2008) Cohen, D., Hairer, E., Lubich, Ch.: Modulated Fourier expansions of highly oscillatory differential equations. Found. Comput. Math. 3, 327–345 (2003) Cohen, D.: Analysis and numerical treatment of highly oscillatory differential equations, Ph.D. thesis, Université de Genève (2004) Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic solutions. ZAMP 30, 177–189 (1979) Engquist, B., Tsai, Y.H.: Heterogeneous multiscale methods for stiff ordinary differential equations. Math. Comput. 74, 1707–1742 (2005) Faou, E., Gauckler, L., Lubich, C.: Plane wave stability of the split-step Fourier method for the nonlinear Schrödinger equation. Forum Math. Sigma 2, e5 (2014) Faou, E., Gauckler, L., Lubich, C.: Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus. Comm. Partial Differ. Equ. 38, 1123–1140 (2013) Frénod, E., Hirstoaga, S., Sonnendrücker, E.: An exponential integrator for a highly oscillatory Vlasov equation. DCDS-S 8, 169–183 (2015) Frénod, E., Hirstoaga, S., Lutz, M., Sonnendrücker, E.: Long time behaviour of an exponential integrator for a Vlasov-Poisson system with strong magnetic field. Commun. Comput. Phys. 16, 440–466 (2014) Garcia-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998) Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961) Gauckler, L.: Error analysis of trigonometric integrators for semilinear wave equations. SIAM J. Numer. Anal. 53, 1082–1106 (2015) Gauckler, L., Lubich, C.: Nonlinear Schrödinger equations and their spectral semi-discretizations over long times. Found. Comput. Math. 10, 141–169 (2010) Gauckler, L., Lubich, C.: Splitting integrators for nonlinear Schrödinger equations over long times. Found. Comput. Math. 10, 275–302 (2010) Grimm, V., Hochbruck, M.: Error analysis of exponential integrators for oscillatory second-order differential equations. J. Phys. A Math. Gen. 39, 5495–5507 (2006) Grimm, V.: On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations. Numer. Math. 100, 71–89 (2005) Grimm, V.: A note on the Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 102, 61–66 (2005) Hochbruck, M., Lubich, Ch.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999) Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010) Hairer, E., Lubich, Ch.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000) Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006) Hairer, E., Lubich, Ch.: On the energy disctribution in Fermi–Pasta–Ulam lattices. Arch. Ration. Mech. Anal. 205, 993–1029 (2012) Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004) Petzold, L.R., Jay, L.O., Yen, J.: Numerical solution of highly oscillatory ordinary differential equations. Acta Numer. 6, 437–483 (1997) Sanz-Serna, J.M.: Mollified impulse methods for highly oscillatory differential equations. SIAM J. Numer. Anal. 46, 1040–1059 (1998) Sanz-Serna, J.M.: Modulated Fourier expansions and heterogeneous multiscale methods. IMA J. Numer. Anal. 29, 595–605 (2009) Tao, M., Owhadi, H., Marsden, J.E.: Non-intrusive and structure preserving multiscale integration of stiff ODEs, SDEs and Hamiltonian systems with hidden slow dynamics via flow averaging. Multiscale Model. Simul. 8, 1269–1324 (2010) Wang, B., Iserles, A., Wu, X.: Arbitrary-order trigonometric Fourier collication methods for multi-frequency osciilatory systems. Found. Comput. Math. 16, 151–181 (2016) Weinan, E.: Analysis of the heterogeneous multiscale method for ordinary differential equations. Commun. Math. Sci. 1, 423–436 (2003) Weinan, E., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1, 87–132 (2003) Weinan, E., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: The heterogeneous multiscale method: a review. Commun. Comput. Phys. 2, 367–450 (2007)