Uniform in bandwidth rate of convergence of the conditional mode estimate on functional stationary ergodic data
Tóm tắt
The aim of this paper is to establish the uniform consistency with rate over a bandwidth interval of the kernel conditional mode estimate whenever functional stationary ergodic data are considered. This kind of result is immediately applicable to proving uniform consistency of kernel-type estimators when the bandwidth h is a function of the data or the location x. Notice that our uniform in bandwidth results are the first ones to be established in this setting. Moreover, the ergodic setting offers a more general framework in regards to the practice than the usual mixing structure.
Tài liệu tham khảo
Chaouch, M., Laïb, N., & Louani, D. (2014). Rate of uniform consistency for a class of mode regression on functional stationary ergodic data. Application to electricity. http://arxiv.org/abs/1407.1991.
Delsol, L. (2009). Advances on asymptotic normality in non-parametric functional time series analysis. Statistics, 43, 13–33.
Ferraty, F., & Vieu, P. (2000). Dimension fractale et estimation de la régression dans des espaces vectoriels semi-normés. Comptes Rendus de l’Academie des Sciences, Serie I (Mathematique), 330, 139–142.
Ferraty, F., & Vieu, P. (2006). Springer series in statistics, Nonparametric functional data analysis. Theory and practice. New York: Springer.
Laïb, N. (2005). Kernel estimates of the mean and the volatility functions in a nonlinear autoregressive model with ARCH errors. Journal of Statistical Planning and Inference, 134, 139–142.
Laïb, N., & Louani, D. (2010). Nonparametric kernel regression estimation for functional stationary ergodic data: asymptotic properties. Journal of Multivariate Analysis, 101, 2266–2281.
Laïb, N., & Louani, D. (2011). Rates of strong consistencies of the regression function estimator for functional stationary ergodic data. Journal of Statistical Planning and Inference, 141, 359–372.
Mason, D. M., & Swanepoel, J. W. H. (2011). A general result on the uniform in bandwidth consistency of kernel-type function estimators. TEST, 20, 72–94.
Parzen, E. (1962). On the estimation of a probability density function and mode. Annals of Mathematical Statistics, 33, 1065–1076.
Ramsay, J., & Silverman, B. W. (1997). Functional data analysis. New York: Springer.