Uniform congruence schemes

Springer Science and Business Media LLC - Tập 10 - Trang 176-188 - 1980
E. Fried1, G. Grätzer1, R. Quackenbush1
1University of Manitoba, Winnipeg, Canada

Tài liệu tham khảo

P. Bacsich andD. Rowlands Hughes Syntactic characterizations of amalgamation, convexity and related properties. J. Symb. Logic39 (1974), 433–451. J. Baldwin andJ. Berman,The number of subdirectly irreducible algebras in a variety Algebra Univ.5 (1975), 379–389. G. Bergman,Sulle classi filtrali di algebre. Ann. Univ. Ferrara Sez. VII.27 (1971), 35–42. B. A. Davey,Weak iniectivity and congruence extension in congruence distributive equational classes. Canad. J. Math.29 (1977), 449–459. A. Day,A note on the congruence extension property. Algebra Univ.1 (1971), 234–235. G. Fraser andA. Horn,Congruence relations in direct products. Proc. Amer. Math. Soc.26 (1970), 390–394. E. Fried,Weakly associative lattices with congruence extension property. Algebra Univ.4 (1974), 151–162. G. Grätzer,Universal Algebra. Van Nostrand, Princeton, N.J., 1968. G. Grätzer,Lattice Theory: First Concepts and Distributive Lattices. W. H. Freeman, San Francisco, 1971. G. Grätzer, andH. Lakser,The structure of pseudocomplemented distributive lattices II. Congruence extension and amalgamation. Trans. Amer. Math. Soc.156 (1971), 343–358. G. Grätzer andE. T. Schmidt,Ideals and congruence relations in lattices. Acta Math. Acad. Sci. Hungar.9 (1958), 137–175. B. Jónsson,Algebras whose congruence lattices are distributive. Math. Scand.21 (1967), 110–121. H. Lakser,Principal congruences of pseudocomplemented distributive lattices. Proc. Amer. Math. Soc.37 (1973), 32–36. R. Magari,The classification of idealizable varieties (congruenze Ideali IV). J. of Algebra,26 (1973), 152–165. R. Magari,Classi e Schemi Ideali (Congruenze Ideali V). Ann. S.N.S. Pisa (Classe di Scienza)27 (1973), 687–706. A. I. Mal'cev,On the general theory of algebraic systems (Russian). Mat. Sb. (N.S.),35 (77) (1954), 3–20. G. Mazzanti,Classi ideali e distributività delle congruenze. Ann. Univ. Ferrara Sez. VII29 (1974), 145–156. R. N. McKenzie,Para primal varieties: A study of finite axiomatizability and definable principal congruences in locally finite varieties. Algebra Univ.8 (1978), 336–348. R. Quackenbush,Near-Boolean algebras I: Combinatorial aspects. Disc. Math.10 (1974), 301–308. R. Quackenbush,Semisimple equational classes with distributive congruence lattices. Ann. Univ. Sci. Budapest Sect. Math.17 (1974), 15–19.