Uniform Convergence for Approximate Traveling Waves in Linear Reaction–Diffusion–Hyperbolic Systems

Avner Friedman1, Bei Hu2
1Department of Mathematics, The Ohio State University, Columbus, USA
2Department of Mathematics, University of Notre Dame, Notre Dame, USA

Tóm tắt

In this paper we study linear reaction–hyperbolic systems of the form $$\varepsilon (\partial_t + v_i \partial_x) p_i = \sum_{j=0}^n k_{ij} p_j$$ , (i =  1, 2, ..., n) for x >  0, t >  0 coupled to a diffusion equation for p 0 =  p 0(x, y, θ, t) with “near-equilibrium” initial and boundary data. This problem arises in a model of transport of neurofilaments in axons. The matrix (k ij ) is assumed to have a unique null vector $$(\lambda_0,\lambda_1,\ldots,\lambda_n)$$ with positive components summed to 1 and the v j are arbitrary velocities such that $$v \equiv \frac{1}{1-\lambda_0} \sum_{j=1}^n \lambda_j v_j > 0$$ . We prove that as $$\varepsilon \to 0$$ the solution converges to a traveling wave with velocity v and a spreading front, and that the convergence rate in the uniform norm is $$O(\varepsilon^{(1-\alpha)/2})$$ , for any small positive α.

Từ khóa


Tài liệu tham khảo

Blum J.J., Reed M.C. (1988) The transport of organelles in axons. Math. Biosci. 90(1–2): 233–245, 0025-5564, MR 958142 (90b:92012) Blum J.J. Reed M.C. (1989) A model for slow axonal transport and its application to neurofilamentous neuropathies. Cell Motility Cytoskeleton 12, 53–65 Craciun G., Brown A., Friedman A. (2005) A dynamical system model of neurofilament transport in axons. J. Theor. Biol. 237(3): 316–322, 0022–5193, MR 2205013 Courant, R., Hilbert, D.: Methods of mathematical physics, vol. II: Partial differential equations (vol. II by R. Courant.), Interscience, New York 1962, xxii+830, MR 0140802 (25 #4216) Chen, Y., Wu, L.: Second order elliptic equations and elliptic systems, translations of mathematical monographs, vol 174. American Mathematical Society, Providence 1998. xiv+246, 0-8218-0970-9, MR 1616087 (99i:35016) Friedman A., Craciun G. (2005) A model of intracellular transport of particles in an axon. J. Math. Bio. 51, 217–246 Friedman A., Craciun G. (2006) Approximate traveling waves in linear reaction-hyperbolic equations. SIAM J. Math. Anal. 38, 741–758 Friedman, A., Hu, B.: Uniform convergence for approximate traveling waves in linear reaction–hyperbolic systems. Indiana Univ. Math. J. (2007) (in press) Pinsky M. (1968) Differential equations with a small parameter and the central limit theorem for functions defined on a finite Markov chain, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9, 101–111, MR 0228067 (37 #3651) Rao M.V., Engle L.J., Mohan P.S., Yuan A., Qiu D., Cataldo A., Hassinger L., Jacobsen S., Lee V.M.Y., Andreadis A., Julien J.P., Bridgman P.C., Nixon R.A. (2002) Myosin Va Binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density. J. Cell Biol. 159, 279–289 Reed M.C., Blum J.J. (1986) Theoretical analysis of radioactivity profiles during fast axonal transport: Effects of deposition and turn over. Cell Motility Cytoskeleton 6, 620–627 Reed M.C., Venakides S., Blum J.J. (1990) Approximate traveling waves in linear reaction-hyperbolic equations. SIAM J. Appl. Math. 50(1): 167–180, 0036–1399, MR 1036237 (91c:92026)