Unified derivation of thin-layer reduced models for shallow free-surface gravity flows of viscous fluids
Tài liệu tham khảo
Ruyer-Quil, 2000, Improved modeling of flows down inclined planes, Eur. Phys. J. B, 15, 357, 10.1007/s100510051137
Gerbeau, 2001, Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation, Discrete Contin. Dyn. Syst. Ser. B, 1, 89, 10.3934/dcdsb.2001.1.89
Marche, 2007, Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects, Eur. J. Mech. B Fluids, 26, 49, 10.1016/j.euromechflu.2006.04.007
Fernández-Nieto, 2010, Shallow water equations for non Newtonian fluids, J. Non-Newton. Fluid Mech., 165, 712, 10.1016/j.jnnfm.2010.03.008
Ancey, 2007, Plasticity and geophysical flows: A review, J. Non-Newton. Fluid Mech., 142, 4, 10.1016/j.jnnfm.2006.05.005
Ancey, 2009, The dam-break problem for Herschel–Bulkley viscoplastic fluids down steep flumes, J. Non-Newton. Fluid Mech., 158, 18, 10.1016/j.jnnfm.2008.08.008
Boyaval, 2010, Reduced Basis techniques for stochastic problems, 435
Bonneton, 2009, Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation, Phys. Fluids, 21
Castro, 2014, Fully nonlinear long-wave models in the presence of vorticity, J. Fluid Mech., 759, 642, 10.1017/jfm.2014.593
Bouchut, 2004, Gravity driven shallow water models for arbitrary topography, Commun. Math. Sci., 2, 359, 10.4310/CMS.2004.v2.n3.a2
Bouchut, 2013, A new model for shallow viscoelastic fluids, M3AS, 23, 1479
Boyaval, 2014, A new model for shallow viscoelastic free-surface flows forced by gravity on rough inclined bottom, ESAIM Proc., 45, 108, 10.1051/proc/201445011
Oron, 1997, Long-scale evolution of thin liquid films, Rev. Modern Phys., 69, 931, 10.1103/RevModPhys.69.931
Craster, 2009, Dynamics and stability of thin liquid films, Rev. Modern Phys., 81, 1131, 10.1103/RevModPhys.81.1131
Chupin, 2009, The FENE viscoelastic model and thin film flows, C. R. Math. Acad. Sci. Paris, 347, 1041, 10.1016/j.crma.2009.06.014
Chupin, 2009, The FENE viscoelastic model and thin film flows, Methods Appl. Anal., 16, 217, 10.4310/MAA.2009.v16.n2.a4
de Saint–Venant, 1871, Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit, C. R. Acad. Sci. Paris, 73, 147
Renardy, 2010, The mathematics of myth: Yield stress behavior as a limit of non-monotone constitutive theories, J. Non-Newton. Fluid Mech., 165, 519, 10.1016/j.jnnfm.2010.02.010
Barnes, 1989
Duvaut, 1972
Bird, 1987
Bird, 1987
Abergel, 1992, A mathematical theory for viscous, free-surface flows over a perturbed plane, Arch. Ration. Mech. Anal., 118, 71, 10.1007/BF00375692
Allain, 1985, Small-time existence for the Navier–Stokes equations with a free surface and surface tension, vol. 121, 355
Thomas Beale, 1985, Large-time behavior of viscous surface waves, vol. 128, 1
Shibata, 2007, On a free boundary problem for the Navier–Stokes equations, Differential Integral Equations, 20, 241, 10.57262/die/1356039501
Le Meur, 2011, Well-posedness of surface wave equations above a viscoelastic fluid, J. Math. Fluid Mech.xpsace, 13, 481, 10.1007/s00021-010-0029-7
Cruchaga, 2014, Numerical modeling and experimental validation of free surface flow problems, Arch. Comput. Methods Eng., 14, 1
Bayada, 2007, Viscoelastic fluids in a thin domain, Quart. Appl. Math., 65, 625, 10.1090/S0033-569X-07-01062-X
Bayada, 2009, Viscoelastic fluids in thin domains: a mathematical proof, Asymptot. Anal., 64, 185, 10.3233/ASY-2009-0940
Bayada, 2010, Viscoelastic fluids in a thin domain: A mathematical study for a non-Newtonian lubrication problem, 315
Whitham, 1999
Stoker, 1957
Martin, 1952, Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane, Phil. Trans. R. Soc. A, 244, 312, 10.1098/rsta.1952.0006
Maronnier, 2003, Numerical simulation of three-dimensional free surface flows, Internat. J. Numer. Methods Fluids, 42, 697, 10.1002/fld.532
Caboussat, 2013, On the modeling and simulation of non-hydrostatic dam break flows, Comput. Vis. Sci., 14, 401, 10.1007/s00791-013-0190-7
Hervouet, 2007
Bates, 1998, Internal and external validation of a two-dimensional finite element code for river flood simulations, Pro. Inst. Civ. Eng.: Water Marit. Energy, 130, 127
Viollet, 1998
Bresch, 2007, Mathematical justification of a shallow water model, Methods Appl. Anal., 27, 87, 10.4310/MAA.2007.v14.n2.a1
Chanson, 2004
Bayada, 1986, The transition between the stokes equations and the reynolds equation: A mathematical proof, Appl. Math. Optim., 14, 73, 10.1007/BF01442229
Kalliadasis, 2000, Steady free-surface thin film flows over topography, Phys. Fluids, 12, 1889, 10.1063/1.870438
Noble, 2008, Shallow water equations for newtonian fluids over arbitrary topographies, Commun. Math. Sci., 6, 29, 10.4310/CMS.2008.v6.n1.a2
Achdou, 1998, Effective boundary conditions for laminar flows over periodic rough boundaries, J. Comput. Phys., 147, 187, 10.1006/jcph.1998.6088
Basson, 2008, Wall laws for fluid flows at a boundary with random roughness, Comm. Pure Appl. Math., 61, 941, 10.1002/cpa.20237
Gérard-Varet, 2009, The Navier wall law at a boundary with random roughness, Comm. Math. Phys., 286, 81, 10.1007/s00220-008-0597-z
Bresch, 2010, Augmented lagrangian method and compressible visco-plastic flows: Applications to shallow dense avalanches, 57
Jop, 2006, A constitutive law for dense granular flows, Nature, 441, 727, 10.1038/nature04801
Mohamed, 2010, Some properties of models for generalized Oldroyd-B fluids, Internat. J. Engrg. Sci., 48, 1470, 10.1016/j.ijengsci.2010.09.014
Renardy, 2000, vol. 73
Saramito, 2009, A new elastoviscoplastic model based on the Herschel–Bulkley viscoplasticity, J. Non-Newton. Fluid Mech., 158, 154, 10.1016/j.jnnfm.2008.12.001
Wapperom, 1998, Thermodynamics of viscoelastic fluids: the temperature equation, J. Rheol., 42, 999, 10.1122/1.550922
Boyaval, 2009, Free-energy-dissipative schemes for the Oldroyd-B model, M2AN Math. Model. Numer. Anal., 43, 523, 10.1051/m2an/2009008
Masmoudi, 2011, Global existence of weak solutions to macroscopic models of polymeric flows, J. Math. Pures Appl., 96, 502, 10.1016/j.matpur.2011.04.008
Narbona-Reina, 2010, On a shallow water model for non-Newtonian fluids, 693, 10.1002/sapm1966451150