Hiểu biết về đặc tính rung động do xoáy gây ra của một ống dẫn biển dạng mềm dài bằng phương pháp liên kết cấu trúc - dòng chảy theo hai chiều

Journal of Marine Science and Technology - Tập 25 - Trang 620-639 - 2019
Xiangxi Han1,2,3, Wei Lin1, Ang Qiu1,4,5, Zhiqiang Feng2,3, Jiaming Wu1, Youhong Tang5, Chengbi Zhao1
1Department of Naval Architecture and Ocean Engineering, School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, China
2Qinzhou Key Laboratory of Marine Advanced Design and Manufacturing, Beibu Gulf University, Qinzhou, China
3Guangxi Ship Digital Design and Advanced Manufacturing Research Center of Engineering Technology, Beibu Gulf University, Qinzhou, China
4Guangdong Sinoway Composites Co., Ltd, Guangzhou, China
5College of Science and Engineering, Flinders University, Adelaide, Australia

Tóm tắt

Một phương pháp liên kết cấu trúc - dòng chảy theo hai chiều đã được phát triển để hiểu một cách toàn diện các đặc tính rung động do xoáy gây ra (VIV) của một ống dẫn biển dạng mềm 3D. Bằng cách nghiên cứu các đặc tính VIV của ống dẫn 3D trong các điều kiện dòng chảy khác nhau và phân tích các đặc điểm cấu trúc của phản ứng của ống dẫn, nghiên cứu này đã thành công trong việc ghi lại hiện tượng chuyển đổi giữa các chế độ rung động thứ tự liền kề và các đặc điểm của một "sóng lan truyền" và một "sóng đứng" ở cả hai đầu của ống dẫn mà không thể có được từ các nghiên cứu VIV 2D. Phân tích tần số của các đặc tính phản ứng rung động cấu trúc cho thấy ống dẫn mềm 3D có hiện tượng rung đa tần số và các đặc tính phản ứng rung rõ rệt trong điều kiện dòng chảy tốc độ cao. Nghiên cứu này đã phân biệt các hình thức xoáy tại các vị trí khác nhau của ống dẫn, tức là, ở giữa ống dẫn, chủ yếu xảy ra các hình thức "2P" hoặc "P + S" và ở hai đầu của ống dẫn, chủ yếu xuất hiện hình thức "2S". Sau khi phân tích so sánh các hình thức xoáy của chế độ chảy của ống dẫn trong các điều kiện tốc độ dòng chảy khác nhau, nghiên cứu này đã xác định rằng dưới vận tốc dòng chảy thấp, ống dẫn chỉ thể hiện hiệu ứng 3D một cách nhẹ nhàng, trong khi dưới vận tốc dòng chảy cao, ống dẫn cho thấy hiệu ứng 3D mạnh mẽ.

Từ khóa

#rung động #cấu trúc #dòng chảy #ống dẫn biển #xoáy #VIV #sóng lan truyền #sóng đứng #hiệu ứng 3D

Tài liệu tham khảo

Sarpkaya T (2004) A critical review of the intrinsic nature of vortex-induced vibrations. J Fluids Struct 19:389–447 Williamson CHK, Govardhan RN (2004) Vortex-induced vibrations. Annu Rev Fluid Mech 36:413–455 Williamson CHK, Govardhan RN (2008) A brief review of recent results in vortex-induced vibrations. J Wind Eng Ind Aerodyn 96:713–735 Khalak A, Williamson CHK (1996) Dynamics of a hydroelastic cylinder with very low mass and damping. J Fluids Struct 10:455–472 Bearman PW (2003) Vortex shedding from oscillating bluff bodies. Annu Rev Fluid Mech 16:195–222 Jeon D, Gharib M (2001) On circular cylinders undergoing two-degree-of-freedom forced motions. J Fluids Struct 15:533–541 Jauvtis N, Williamson CHK (2004) The effect of two degrees of freedom on vortex-induced vibration at low mass and damping. J Fluid Mech 509:23–62 Guilmineau E, Queutey P (2004) Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow. J Fluids Struct 19:449–466 Placzek A, Sigrist JF, Hamdouni A (2009) Numerical simulation of an oscillating cylinder in a cross-flow at low Reynolds number: forced and free oscillations. Comput Fluids 38:80–100 Bao Y, Huang C, Zhou D, Tu JH, Han ZL (2012) Two-degree-of-freedom flow-induced vibrations on isolated and tandem cylinders with varying natural frequency ratios. J Fluids Struct 35:50–75 Kang Z, Jia LS (2013) An experimental investigation of one-and two-degree of freedom VIV of cylinders. Acta Mech Sin 29:284–293 Wang XK, Wang C, Li YL, Tan SK (2017) Flow patterns of a low mass-damping cylinder undergoing vortex-induced vibration: transition from initial branch and upper branch. Appl Ocean Res 62:89–99 Han X, Lin W, Tang Y, Zhao C, Sammut K (2015) Effects of natural frequency ratio on vortex-induced vibration of a cylindrical structure. Comput Fluids 10:62–76 Han X, Lin W, Zhang X, Tang Y, Zhao C (2016) Two degree of freedom flow-induced vibration of cylindrical structures in marine environments: frequency ratio effects. J Mar Sci Technol 21:1–14 Han X, Zhang X, Tang Y, Qiu A, Lin W, Zhao C (2017) Dynamic mechanism of phase differences in one degree-of-freedom vortex-induced vibration of a cylindrical structure. J Eng Marit Environ. https://doi.org/10.1177/1475090217717356 Lie H, Larsen C M, Vandiver JK (1997) Vortex induced vibrations of long marine risers; model test in a rotating rig. In: The 16th international conference on offshore mechanics and arctic engineering Lie H, Kaasen KE (2006) Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow. J Fluids Struct 22:557–575 Wilde D, Wilde JJD, Huijsmans RHM (2004) Laboratory investigation of long riser VIV response. In: The 14th international offshore and polar engineering conference Tognarelli MA, Slocum ST, Frank WR, Campbell RB (2004) VIV response of a long flexible cylinder in uniform and linearly sheared currents. In: The offshore technology conference Chaplin JR, Bearman PW, Cheng Y et al (2005) Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser. J Fluids Struct 21:25–40 Ge F, Long X, Wang L, Hong YS (2009) Flow-induced vibrations of long circular cylinders modeled by coupled nonlinear oscillators. Sci China 52:1086–1093 Trim AD, Braaten H, Lie H, Tognarelli M (2005) Experimental investigation of vortex-induced vibration of long marine risers. J Fluids Struct 21:335–361 Srinil N (2011) Analysis and prediction of vortex-induced vibrations of variable-tension vertical risers in linearly sheared currents. Appl Ocean Res 33:41–53 Thorsen MJ, Sævik S, Larsen CM (2014) A simplified method for time domain simulation of cross-flow vortex-induced vibrations. J Fluids Struct 49:135–148 Thorsen MJ, Sævik S, Larsen CM (2015) Fatigue damage from time domain simulation of combined in-line and cross-flow vortex-induced vibrations. Mar Struct 41:200–222 Xue H, Wang K, Tang W (2015) A practical approach to predicting cross-flow and in-line VIV response for deepwater risers. Appl Ocean Res 52:92–101 Larsen CM, Halse KH (1997) Comparison of models for vortex induced vibrations of slender marine structures. Mar Struct 10:413–441 Shulz KW, Meling TS (2004) Multi-strip numerical analysis for flexible riser response. OMAE Willden RHJ, Graham JMR (2004) Multi-modal vortex-induced vibrations of a vertical riser pipe subject to a uniform current profile. Eur J Mech B Fluids 23:209–218 Willden RHJ, Graham JMR (2005) CFD simulations of the vortex-induced vibrations of model riser pipes. OMAE Willden RHJ, Graham JMR (2001) Numerical prediction of VIV on long flexible circular cylinders. J Fluids Struct 15:659–669 Yamamoto CT, Fregonesi RA, Meneghini JR, Saltara F (2002) Numerical simulation of the flow around flexible cylinders. OMAE Hover FS, Davis JT, Triantafyllou MS (2004) Three-dimensionality of mode transition in vortex-induced vibrations of a circular cylinder. Eur J Mech B Fluids 23:29–40 Constantinides Y, Oakley OH, Holmes S (2007) CFD high L/D riser modeling study. In: ASME 2007 26th international conference on offshore mechanics and arctic engineering. American Society of Mechanical Engineers, pp 715–722 Holmes S, Oakley OH, Constantinides Y (2006) Simulation of riser VIV using fully three dimensional CFD simulations. In: 25th international conference on offshore mechanics and arctic engineering. American Society of Mechanical Engineers, pp 563–570 Xie F, Deng J, Zheng Y (2011) Multi-mode of vortex-induced vibration of a flexible circular cylinder. J Hydrodyn 23:483–490 Huang K, Chen HC, Chen CR (2010) Vertical riser VIV simulation in uniform current. J Offshore Mech Arct Eng 132:395–405 Huang K, Chen HC, Chen CR (2012) Vertical riser VIV simulation in sheared current. Int J Offshore Polar Eng 22:1369–1376 Bourguet R, Karniadakis GE, Triantafyllou MS (2011) Lock-in of the vortex-induced vibrations of a long tensioned beam in shear flow. J Fluids Struct 27:838–847 Bourguet R, Lucor D, Triantafyllou MS (2012) Mono- and multi-frequency vortex-induced vibrations of a long tensioned beam in shear flow. J Fluids Struct 32:52–64 Bourguet R, Karniadakis GE, Triantafyllou MS (2013) Multi-frequency vortex-induced vibrations of a long tensioned beam in linear and exponential shear flows. J Fluids Struct 41:33–42 Bourguet R, Karniadakis GE, Triantafyllou MS (2013) Phasing mechanisms between the in-line and cross-flow vortex-induced vibrations of a long tensioned beam in shear flow. Comput Struct 122:155–163 Benhamadouche S, Laurence D (2003) LES, coarse LES, and transient RANS comparisons on the flow across a tube bundle. Int J Heat Fluid Flow 24:470–479 Nicoud F, Ducros F (1999) Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul Combust 62:183–200 Hinze JO (1975) Turbulence. McGraw-Hill Publishing Co., New York Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164 Feng Z, Jiang N, Zang F et al (2016) Nonlinear characteristics analysis of vortex-induced vibration for a three-dimensional flexible tube. Commun Nonlinear Sci Numer Simul 34:1–11 Sanaati B, Kato N (2013) Vortex-induced vibration (VIV) dynamics of a tensioned flexible cylinder subjected to uniform cross-flow. J Mar Sci Technol 18:247–261 Kang Z, Jia L (2013) An experiment study of a cylinder’s two degree of freedom VIV trajectories. Ocean Eng 70:129–140