Understanding thermal alleviation in cold dwell fatigue in titanium alloys
Tài liệu tham khảo
Anahid, 2009, Wavelet decomposed dual-time scale crystal plasticity FE model for analyzing cyclic deformation induced crack nucleation in polycrystals, Model. Simulat. Mater. Sci. Eng., 17, 10.1088/0965-0393/17/6/064009
Anahid, 2011, Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of polycrystalline titanium alloys, J. Mech. Phys. Solid., 59, 2157, 10.1016/j.jmps.2011.05.003
Bache, 2003, A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions, Int. J. Fatig., 25, 1079, 10.1016/S0142-1123(03)00145-2
Bache, 1997, Dwell sensitive fatigue in a near alpha titanium alloy at ambient temperature, Int. J. Fatig., 19, 83, 10.1016/S0142-1123(97)00020-0
Cheng, 2016, Stabilized tetrahedral elements for crystal plasticity finite element analysis overcoming volumetric locking, Comput. Mech., 57, 733, 10.1007/s00466-016-1258-2
Cuddihy, 2017, On cold dwell facet fatigue in titanium alloy aero-engine components, Int. J. Fatig., 97, 177, 10.1016/j.ijfatigue.2016.11.034
Dunne, 2008, Lengthscale, orientation and morphology effects in fatigue crack nucleation in polycrystals, 145
Dunne, 2008, On the mechanisms of fatigue facet nucleation in titanium alloys, Fatig. Fract. Eng. Mater. Struct., 31, 949, 10.1111/j.1460-2695.2008.01284.x
Dunne, 2007, Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: application to cold-dwell fatigue in Ti alloys, Int. J. Plast., 23, 1061, 10.1016/j.ijplas.2006.10.013
Dunne, 2007, A systematic study of hcp crystal orientation and morphology effects in polycrystal deformation and fatigue, vol. 463, 1467
Es-Souni, 2001, Creep deformation behavior of three high-temperature near α-Ti alloys: IMI 834, IMI 829, and IMI 685, Metall. Mater. Trans., 32, 285, 10.1007/s11661-001-0260-1
Evans, 1994, Dwell-sensitive fatigue under biaxial loads in the near-alpha titanium alloy IMI685, Int. J. Fatig., 16, 443, 10.1016/0142-1123(94)90194-5
Evans, 1979, The effect of hold time on the fatigue properties of a β-processed titanium alloy, Metall. Trans. A, 10, 1837, 10.1007/BF02811727
Ghosh, 2013, Homogenized constitutive and fatigue nucleation models from crystal plasticity FE simulations of Ti alloys, Part 1: macroscopic anisotropic yield function, Int. J. Plast., 47, 182, 10.1016/j.ijplas.2012.12.008
Ghosh, 2013, Microstructure and load sensitive fatigue crack nucleation in Ti-6242 using accelerated crystal plasticity FEM simulations, Int. J. Fatig., 48, 231, 10.1016/j.ijfatigue.2012.10.022
Hardt, 1999, High-temperature fatigue damage mechanisms in near-α titanium alloy IMI 834, Int. J. Fatig., 21, 779, 10.1016/S0142-1123(99)00042-0
Hasija, 2003, Deformation and creep modeling in polycrystalline Ti–6Al alloys, Acta Mater., 51, 4533, 10.1016/S1359-6454(03)00289-1
Huang, 2012, In situ neutron-diffraction studies on the creep behavior of a ferritic superalloy, Metall. Mater. Trans., 43, 1497, 10.1007/s11661-011-0979-2
Joseph, 2018, Slip transfer and deformation structures resulting from the low cycle fatigue of near-alpha titanium alloy Ti-6242Si, Int. J. Plast., 100, 90, 10.1016/j.ijplas.2017.09.012
Lee, 1997, Modeling the mechanical behavior of tantalum, Metall. Mater. Trans., 28, 113, 10.1007/s11661-997-0087-5
Ozturk, 2017, Experimentally validated dwell and cyclic fatigue crack nucleation model for α–titanium alloys, Scripta Mater., 127, 15, 10.1016/j.scriptamat.2016.08.031
Ozturk, 2016, Crystal plasticity FE study of the effect of thermo-mechanical loading on fatigue crack nucleation in titanium alloys, Fatig. Fract. Eng. Mater. Struct., 39, 752, 10.1111/ffe.12410
Pawar, 1968, The anisotropy of the thermal expansion of [alpha]-titanium, Acta Crystallogr. A, 24, 316, 10.1107/S0567739468000525
Pototzky, 1998, Thermomechanical fatigue behavior of the high-temperature titanium alloy IMI 834, Metall. Mater. Trans., 29, 2995, 10.1007/s11661-998-0207-x
Qiu, 2014, A comparative study on dwell fatigue of Ti-6Al-2Sn-4Zr-xMo (x = 2 to 6) alloys on a microstructure-normalized basis, Metall. Mater. Trans., 45, 6075, 10.1007/s11661-014-2541-5
Ready, 2017, The role of molybdenum in suppressing cold dwell fatigue in titanium alloys, 473
Sinha, 2006, Observations on the faceted initiation site in the dwell-fatigue tested ti-6242 alloy: crystallographic orientation and size effects, Metall. Mater. Trans., 37, 1507, 10.1007/s11661-006-0095-x
Song, 1989, Size effect on the fatigue behaviour of IMI 829 titanium alloy under dwell conditions, Int. J. Fatig., 11, 85, 10.1016/0142-1123(89)90002-9
Venkataramani, 2008, Microstructural parameters affecting creep induced load shedding in Ti-6242 by a size dependent crystal plasticity FE model, Int. J. Plast., 24, 428, 10.1016/j.ijplas.2007.05.001
Williams, 2002, Deformation behavior of HCP Ti-Al alloy single crystals, Metall. Mater. Trans., 33, 837, 10.1007/s11661-002-0153-y
Zhang, 2015, On rate-dependent polycrystal deformation: the temperature sensitivity of cold dwell fatigue, 471
Zhang, 2016, Determination of Ti-6242 α and β slip properties using micro-pillar test and computational crystal plasticity, J. Mech. Phys. Solid., 95, 393, 10.1016/j.jmps.2016.06.007
Zheng, 2016, Discrete dislocation and crystal plasticity analyses of load shedding in polycrystalline titanium alloys, Int. J. Plast., 87, 15, 10.1016/j.ijplas.2016.08.009
Zheng, 2016, Dwell fatigue in two Ti alloys: an integrated crystal plasticity and discrete dislocation study, J. Mech. Phys. Solid., 96, 411, 10.1016/j.jmps.2016.08.008
Zheng, 2017, Investigation of slip transfer across HCP grain boundaries with application to cold dwell facet fatigue, Acta Mater., 127, 43, 10.1016/j.actamat.2017.01.021
Zheng, 2017, Mechanistic basis of temperature-dependent dwell fatigue in titanium alloys, J. Mech. Phys. Solid., 107, 185, 10.1016/j.jmps.2017.07.010
Zheng, 2018, Slip transfer across phase boundaries in dual phase titanium alloys and the effect on strain rate sensitivity, Int. J. Plast., 104, 23, 10.1016/j.ijplas.2018.01.011
Zhu, 2014, The effects of regularity on the geometrical properties of Voronoi tessellations, Phys. Stat. Mech. Appl., 406, 42, 10.1016/j.physa.2014.03.012