Hiểu về cấu trúc của các phức hợp kim loại salicyl hydrazone: cấu trúc tinh thể, phân tích AIM và bề mặt Hirshfeld của trichloro-(N-salicylidenebenzoylhydrazinato-N,O,O′)-tin(IV)

Structural Chemistry - Tập 27 - Trang 25-36 - 2015
Alexander A. Korlyukov1,2, Natalia V. Shmatkova3, Inna I. Seifullina3, Anna V. Vologzhanina1
1A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences (INEOS RAS), Moscow, Russian Federation
2Pirogov Russian National Research Medical University, Moscow, Russian Federation
3Mechnikov Odessa National University, Odessa, Ukraine

Tóm tắt

Kết quả của nghiên cứu chi tiết về thực nghiệm và lý thuyết về liên kết hóa học nội phân tử và liên phân tử của phức hợp salicyl hydrazone với SnCl3 được mô tả. Mô hình liên kết hóa học trong tinh thể và phân tử cô lập được mô tả theo lý thuyết “Atoms in Molecules” (AIM) của Bader. Phân tích các điện tích AIM đã cho thấy lượng điện tích chuyển giao từ ligand sang phần SnCl3 bằng khoảng ≈ 0,3 e, dẫn đến sự phân phối lại đáng kể chiều dài liên kết so với các salicyl hydrazonat thiếc(IV) khác. So sánh hình học và các đặc tính phân bố mật độ electron cho thấy sự suy yếu của các liên kết phối trí Sn–O và Sn–N trong phân tử cô lập so với tinh thể lên tới 10 kcal/mol. Hiệu ứng này được giải thích bởi liên kết H···Cl giữa các phân tử. Theo phân tích bề mặt Hirshfeld, những tương tác này có đóng góp rõ rệt nhất vào năng lượng đóng gói tinh thể. Ý nghĩa của bài viết này nằm ở việc kiểm tra chi tiết ảnh hưởng của đóng gói tinh thể lên các liên kết phối trí của nguyên tử thiếc(IV) và các tương tác liên phân tử điều khiển việc tự lắp ráp siêu phân tử của các chuỗi liên kết hydro thông qua các tương tác cụ thể và stacking π···π.

Từ khóa


Tài liệu tham khảo

Tiekink ERT (1991) Structural chemistry of organotin carboxylates. J Organomet Chem 408:323–327. doi:10.1016/0022-328X(91)83203-G Chandrasekhar V, Nagendran S, Baskar V (2002) Organotin assemblies containing Sn–O bonds. Coord Chem Rev 235:1–52. doi:10.1016/S0010-8545(02)00178-9 Davies AG (2004) Organotin chemistry, 2nd, completely rev. and updated ed. Wiley-VCH, Weinheim Chandrasekhar V, Gopal K, Thilagar P (2007) Nanodimensional organostannoxane molecular assemblies. Acc Chem Res 40:420–434. doi:10.1021/ar600061f Chandrasekhar V, Singh P, Gopal K (2007) Organotin compounds containing four-membered distannoxane [Sn(µ-OH)]2 units. Appl Organomet Chem 21:483–503. doi:10.1002/aoc.1260 Bacchi A, Bonardi A, Carcelli M, Mazza P, Pelagatti P, Pelizzi C, Pelizzi G, Solinas C, Zani F (1998) Organotin complexes with pyrrole-2,5-dicarboxaldehyde bis(acylhydrazones). Synthesis, structure, antimicrobial activity and genotoxicity. J Inorg Biochem 69:101–112. doi:10.1016/S0162-0134(97)10027-7 Rashan LJ, Aziz AA, Sulayman KD, Al-Allaf TAK, Al-Shama’a MA (1998) Antibacterial activity of diorganotin(IV) complexes of some Schiff-base derivatives. Asian J Chem 10:338–341 Rocamora-Reverte L, Carrasco-García E, Ceballos-Torres J, Prashar S, Kaluđerović GN, Ferragut JA, Gómez-Ruiz S (2012) Study of the anticancer properties of tin(IV) carboxylate complexes on a panel of human tumor cell lines. ChemMedChem 7:301–310. doi:10.1002/cmdc.201100432 Tabassum S, Pettinari C (2006) Chemical and biotechnological developments in organotin cancer chemotherapy. J Organomet Chem 691:1761–1766. doi:10.1016/j.jorganchem.2005.12.033 Dokorou V, Primikiri A, Kovala-Demertzi D (2011) The triphenyltin(VI) complexes of NSAIDs and derivatives. Synthesis, crystal structure and antiproliferative activity. Potent anticancer agents. J Inorg Biochem 105:195–201. doi:10.1016/j.jinorgbio.2010.10.008 Jain VK (1994) The chemistry and applications of organotin(IV) complexes of phosphorus-based acids. Coord Chem Rev 135–136:809–843. doi:10.1016/0010-8545(94)80083-9 Orita A, Mitsutome A, Otera J (1998) Distannoxane-catalyzed highly selective acylation of alcohols. J Org Chem 63:2420–2421. doi:10.1021/jo9800412 Orita A, Watanabe A, Tsuchiya H, Otera J (1999) Integrated chemical process. Construction of highly substituted allylic moieties from allylic sulfones in one-pot. Tetrahedron 55:2889–2898. doi:10.1016/S0040-4020(99)00053-8 Hori Y, Hagiwara T (1999) Ring-opening polymerisation of β-butyrolactone catalysed by distannoxane complexes: study of the mechanism. Int J Biol Macromol 25:237–245. doi:10.1016/S0141-8130(99)00038-0 Chernov OV, Smirnov AY, Portnyagin IA, Khrustalev VN, Nechaev MS (2009) Heteroleptic tin (II) dialkoxides stabilized by intramolecular coordination Sn(OCH2CH2NMe2)(OR) (R = Me, Et, iPr, tBu, Ph). Synthesis, structure and catalytic activity in polyurethane synthesis. J Organomet Chem 694:3184–3189. doi:10.1016/j.jorganchem.2009.05.014 Takagi N, Shimizu T, Frenking G (2009) Divalent E(0) Compounds (E = Si-Sn). Chem Eur J 15:8593–8604. doi:10.1002/chem.200901401 Power PP (2007) Bonding and reactivity of heavier group 14 element alkyne analogues. Organometallics 26:4362–4372. doi:10.1021/om700365p Singh N, Prasad R, Bhattacharya S (2009) Structural studies on Ph3MSMPh3 (M = Sn, Pb): quest for a metal–metal bond. Polyhedron 28:548–552. doi:10.1016/j.poly.2008.11.033 Poleshchuk OK, Shevchenko EL, Branchadell V, Lein M, Frenking G (2005) Energy analysis of the chemical bond in group IV and V complexes: a density functional theory study. Int J Quantum Chem 101:869–877. doi:10.1002/qua.20348 Korlyukov AA, Khrustalev VN, Vologzhanina AV, Lyssenko KA, Nechaev MS, Antipin MYu (2011) Bis (2-2-(dimethylamino) ethoxo-N, O, O)-di(phenolato-O) ditin (II): a high-resolution single-crystal X-ray diffraction and quantum chemical study. Acta Crystallogr B B67:315–323. doi:10.1107/S0108768111022695 Bader RWF (1990) Atoms in Molecules: A Quantum Theory. Oxford University Press, New York Karlov SS, Tyurin DA, Zabalov MV, Churakov AV, Zaitseva GS (2005) Quantum chemical study of group 14 elements pentacoordinated derivatives—metallatranes. J Mol Struct THEOCHEM 724:31–37. doi:10.1016/j.theochem.2005.01.036 Schäfer A, Winter F, Saak W, Haase D, Pöttgen R, Müller T (2011) Stannylium ions, a tin(II) arene complex, and a tin dication stabilized by weakly coordinating anions. Chem Eur J 17:10979–10984. doi:10.1002/chem.201101938 Gruener SV, Airapetyan DV, Korlyukov AA, Shipov AG, Baukov YuI, Petrosyan VS (2010) Interaction of ethyltrichlorostannane with N,N-dimethylamides of O-trimethylsilyl-α-hydroxyacids. Appl Organomet Chem 24:888–896. doi:10.1002/aoc.1732 Beckmann J, Heinrich D, Mebs S (2013) Molecular structure and real-space bonding descriptors (AIM, ELI-D) of phenyl(triphenylstannyl)telluride: phenyl(triphenylstannyl)telluride. Z Für Anorg Allg Chem 639:2129–2133. doi:10.1002/zaac.201300271 Hupf E, Lork E, Mebs S, Chęcińska L, Beckmann J (2014) Probing donor–acceptor interactions in peri-substituted diphenylphosphinoacenaphthyl-element dichlorides of group 13 and 15 elements. Organometallics 33:7247–7259. doi:10.1021/om501036c Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173. doi:10.1016/S0009-2614(98)00036-0 Abramov YuA (1997) On the possibility of kinetic energy density evaluation from the experimental electron-density distribution. Acta Crystallogr A A53:264–272. doi:10.1107/S010876739601495X Kirzhnits DA (1957) Quantum corrections to the Thomas-Fermi equation. Sov Phys JETP 64–72 Korlyukov AA, Lysenko KA, Antipin MYu, Shipov AG, Kramarova EP, Murasheva TA, Negrebetskii VV, Ovchinnikov YuE, Pogozhikh SS, Yakovlev IP, Baukov YuI (2006) Synthesis, molecular and crystal structure, and features of the electronic structure of bis(O’i)-chelated bis(2,2-dimethylbenzo-[2H]-4-oxo-1,3-oxazino-3-methyl)difluorosilane. Chem Heterocycl Compd 42:1592–1602. doi:10.1007/s10593-006-0283-z Korlyukov AA, Komissarov EA, Antipin MYu, Alekseev NV, Pavlov KV, Krivolapova OV, Lahtin VG, Chernyshev EA (2008) The structural peculiarities and chemical bonding in three organogermanes Cl3GeCH2OC(O)R with rigid coordination centre. J Mol Struct 875:135–142. doi:10.1016/j.molstruc.2007.04.019 Korlyukov AA, Lyssenko KA, Antipin MYu, Grebneva EA, Albanov AI, Trofimova OM, Zel’bst EA, Voronkov MG (2009) Si-Fluoro substituted quasisilatranes (N → Si) FYSi(OCH2CH2)2NR. J Organomet Chem 694:607–615. doi:10.1016/j.jorganchem.2008.09.010 Tikhonova IA, Tugashov KI, Dolgushin FM, Korlyukov AA, Petrovskii PV, Klemenkova ZS, Shur VB (2009) Coordination chemistry of mercury-containing anticrowns. Synthesis and structures of the complexes of cyclic trimeric perfluoro-o-phenylenemercury with ethanol, THF and bis-2,2′-tetrahydrofuryl peroxide. J Organomet Chem 694:2604–2610. doi:10.1016/j.jorganchem.2009.03.046 Puntus LN, Lyssenko KA, Antipin MY, Bünzli J-CG (2008) Role of inner- and outer-sphere bonding in the sensitization of Eu(III)-luminescence deciphered by combined analysis of experimental electron density distribution function and photophysical data. Inorg Chem 47:11095–11107. doi:10.1021/ic801402u Borissova AO, Korlyukov AA, Antipin MY, Lyssenko KA (2008) Estimation of dissociation energy in donor–acceptor complex AuCl·PPh3 via topological analysis of the experimental electron density distribution function. J Phys Chem A 112:11519–11522. doi:10.1021/jp807258d Ainscough EW, Brodie AM, Ranford JD, Waters JM (1995) Hexafluorosilicate coordination to the antitumour copper(II) salicylaldehyde benzoylhydrazone (H2L) system: single-crystal X-ray structure of [{Cu(HL)H2O}2SiF6]·2H2O. Inorg Chim Acta 236:83–88. doi:10.1016/0020-1693(95)04604-8 Das S, Pal S (2005) Copper(II) complexes with tridentate N-(benzoyl)-N′-(salicylidine)-hydrazine and monodentate N-heterocycles: investigations of intermolecular interactions in the solid state. J Mol Struct 753:68–79. doi:10.1016/j.molstruc.2005.05.037 Platts JA, Thomsen MK, Overgaard J (2013) Electron localisation in Ga-heterocyclic compounds. Z Für Anorg Allg Chem 639:1979–1984. doi:10.1002/zaac.201200498 Blessing RH (1995) An empirical correction for absorption anisotropy. Acta Crystallogr A A51:33–38. doi:10.1107/S0108767394005726 Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A A64:112–122. doi:10.1107/S0108767307043930 Hansen NK, Coppens P (1978) Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr A A34:909–921. doi:10.1107/S0567739478001886 Koritsansky TS, Howard ST, Richter T, Macchi P, Volkov A, Gatti C, Mallinson PR, Su S, Hansen NK (2003) XD—a computer program package for multipole refinement and topological analysis of charge densities from diffraction data Su Z, Coppens P (1998) Relativistic X-ray elastic scattering factors for neutral atoms Z = 1–54 from multiconfiguration Dirac–Fock wavefunctions in the 0–12Å−1 sinθ/λ range, and six-Gaussian analytical expressions in the 0–6Å−1 range. Erratum. Acta Crystallogr A 54:357. doi:10.1107/S010876739800124X Overgaard J, Jones C, Dange D, Platts JA (2011) Experimental charge density analysis of a gallium(I) N-heterocyclic carbene analogue. Inorg Chem 50:8418–8426. doi:10.1021/ic2009946 Zhurov VV, Zhurova EA, Stash AI, Pinkerton AA (2011) Characterization of bonding in cesium uranyl chloride: topological analysis of the experimental charge density. J Phys Chem A 115:13016–13023. doi:10.1021/jp204965b Schmøkel MS, Bjerg L, Cenedese S, Jørgensen MRV, Chen Y-S, Overgaard J, Iversen BB (2014) Atomic properties and chemical bonding in the pyrite and marcasite polymorphs of FeS2: a combined experimental and theoretical electron density study. Chem Sci 5:1408. doi:10.1039/c3sc52977k Meindl K, Herbst-Irmer R, Henn J (2010) On the effect of neglecting anharmonic nuclear motion in charge density studies. Acta Crystallogr A 66:362–371. doi:10.1107/S0108767310006343 Zhurov VV, Zhurova EA, Pinkerton AA (2008) Optimization and evaluation of data quality for charge density studies. J Appl Crystallogr 41:340–349. doi:10.1107/S0021889808004482 Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Crystallogr 45:849–854. doi:10.1107/S0021889812029111 Stash A, Tsirelson V (2002) WinXPRO: a program for calculating crystal and molecular properties using multipole parameters of the electron density. J Appl Crystallogr 35:371–373. doi:10.1107/S0021889802003230 Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558. doi:10.1103/PhysRevB.47.558 Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169. doi:10.1103/PhysRevB.54.11169 Kresse G, Furthmuller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. doi:10.1016/0927-0256(96)00008-0 Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. doi:10.1103/PhysRevLett.77.3865 Gonze X, Beuken J-M, Caracas R, Detraux F, Fuchs M, Rignanese G-M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J-Y, Allan DC (2002) First-principles computation of material properties: the ABINIT software project. Comput Mater Sci 25:478–492. doi:10.1016/S0927-0256(02)00325-7 Frisch MJ et al. Gaussian 03, C.01 Keith TA. AIMALL, version 09.04.23. http://aim.tkgristmill.com/ Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32. doi:10.1039/B818330A Wolff SK, Grimwood DG, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) CrystalExplorer (Version 3.0). University of Western Australia, Perth Dey DK, Samanta B, Lycka A, Dahlenburg L (2003) Simple synthesis, characterization and structure of diorganotin(IV) complexes containing the N-(2-salicylidene)-N’-benzoylhydrazone ligand. Z Naturforschung Sect B J Chem Sci 58:336–344 Lyubchova A, Cossé-Barbi A, Doucet JP, Robert F, Souron JP, Quarton M (1995) Salicylaldehyde benzoyl hydrazone. Acta Crystallogr C 51:1893–1895. doi:10.1107/S0108270195003076 Luo R (2007) Comprehensive handbook of chemical bond energies. CRC Press, Taylor and Francis Group LLC, Boca Raton Wakamatsu K, Orita A, Otera J (2008) Evaluation of tin–oxygen bond association by means of ab initio molecular orbital calculations. Organometallics 27:1092–1097. doi:10.1021/om701179j Nechaev MS, Ustynyuk YuA (2005) Molecular geometry and electronic structures of stable organic derivatives of divalent germanium and tin (M = Ge, n = 1; M = Sn, n = 2): a theoretical study. Russ Chem Bull 54:108–116. doi:10.1007/s11172-005-0225-4 Strenalyuk T, Samdal S, Volden HV (2008) Molecular structure of phthalocyaninatotin(II) studied by gas-phase electron diffraction and high-level quantum chemical calculations. J Phys Chem A 112:10046–10052. doi:10.1021/jp804809e Kocher N, Henn J, Gostevskii B, Kost D, Kalikhman I, Engels B, Stalke D (2004) Si–E (E = N, O, F) bonding in a hexacoordinated silicon complex: new facts from experimental and theoretical charge density studies. J Am Chem Soc 126:5563–5568. doi:10.1021/ja038459r Voronkov MG, Dyakov VM, Kirpichenko SV (1982) Silatranes. J Organomet Chem 233:1–147. doi:10.1016/S0022-328X(00)86939-9 Zubatyuk RI, Shishkina SV, Kucherenko LI, Mazur IA, Shishkin OV (2012) Environment-induced stabilization of hydrogen-bonded dimers in crystal of lysine (5-methyl-1H-[1,2,4]triazol-3ylsulfanyl)-acetate. Struct Chem 23:581–586. doi:10.1007/s11224-011-9893-x Shishkin OV, Zubatyuk RI, Shishkina SV, Dyakonenko VV, Medviediev VV (2014) Role of supramolecular synthons in the formation of the supramolecular architecture of molecular crystals revisited from an energetic viewpoint. Phys Chem Chem Phys 16:6773–6786. doi:10.1039/C3CP55390F Shishkin OV, Zubatyuk RI, Maleev AV, Boese R (2014) Investigation of topology of intermolecular interactions in the benzene–acetylene co-crystal by different theoretical methods. Struct Chem 25:1547–1552. doi:10.1007/s11224-014-0413-7 Turner MJ, Thomas SP, Shi MW, Jayatilaka D, Spackman MA (2015) Energy frameworks: insights into interaction anisotropy and the mechanical properties of molecular crystals. Chem Commun 51:3735–3738. doi:10.1039/C4CC09074H Dean PM, Pringle JM, Forsyth CM, Scott JL, MacFarlane DR (2008) Interactions in bisamide ionic liquids—insights from a Hirshfeld surface analysis of their crystalline states. New J Chem 32:2121–2126. doi:10.1039/B809606F Salvo FD, Camargo B, García Y, Teixidor F, Viñas C, Planas JG, Light ME, Hursthouse MB (2011) Supramolecular architectures in o-carboranyl alcohols bearing N-aromatic rings: syntheses, crystal structures and melting points correlation. CrystEngComm 13:5788–5806. doi:10.1039/C1CE05449J Grabowsky S, Dean PM, Skelton BW, Sobolev AN, Spackman MA, White AH (2012) Crystal packing in the 2-R,4-oxo-[1,3-a/b]-naphthodioxanes—Hirshfeld surface analysis and melting point correlation. CrystEngComm 14:1083–1093. doi:10.1039/C2CE06393J