Understanding the reaction mechanism of the Lewis acid (MgBr2)-catalysed [3+2] cycloaddition reaction between C-methoxycarbonyl nitrone and 2-propen-1-ol: a DFT study
Tóm tắt
The mechanism of the non-catalysed and the MgBr2-catalysed [3+2] cycloaddition (32CA) reactions between C-methoxycarbonyl nitrone and 2-propen-1-ol has been theoretically investigated within the molecular electron density theory using DFT methods at the B3LYP/6-31G(d) computational level. Analysis of DFT reactivity indices allows explaining the role of the MgBr2 Lewis acid in the catalysed 32CA reaction. The 32CA reaction between C-methoxycarbonyl nitrone and 2-propen-1-ol takes place with a relative high activation enthalpy, 13.5 kcal mol−1, as a consequence of the non-polar character of this zw-type 32CA reaction. Coordination of the MgBr2 LA to C-methoxycarbonyl nitrone accelerates the corresponding zw-type 32CA reaction by taking place through a polar mechanism and with lower activation enthalpy, 8.5 kcal mol−1. Both 32CA reactions, which take place through a one-step mechanism, are completely meta regioselective and present low exo stereoselectivity, which increases in the catalysed process. Energy and non-covalent interaction analyses at the transition-state structures indicate that the formation of an intramolecular H–Br hydrogen bond in the catalysed process could be responsible for the exo selectivity experimentally observed.
Tài liệu tham khảo
Huisgen R (1963) Angew Chem Int Ed 2:565–598
Padwa A (1984) 1, 3-Dipolar cycloaddition chemistry, vol 1-2. Wiley Interscience, New York
Padwa A (2002) Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products, vol 59. Wiley, New York
Gothelf KV, Jorgensen KA (1998) Chem Rev 98:863–909
Tufariello JJ (1984) 1,3-Dipolar cycloaddition chemistry. A. Padwa, Wiley, New York
Torssell KBG (1988) Nitrile oxides, nitrones and nitronates in organic synthesis. VCH, New York
Tufariello JJ (1979) Acc Chem Res 12:396–403
Domingo LR, Sáez JA (2009) Org Biomol Chem 7:3576–3583
Domingo LR, Emamian SR (2014) Tetrahedron 70:1267–1273
Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Tetrahedron 72:1524–1532
Domingo LR (2016) Molecules 21:1319
De Proft F, Geerlings P (2001) Chem Rev 101:1451–1464
Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Molecules 21:748
Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403
Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen J, Yang AW (2010) J Am Chem Soc 132:6498–6506
Ríos-Gutiérrez M, Domingo LR, Pérez P (2015) RSC Adv 5:84797–84809
Domingo LR, Aurell MJ, Pérez P (2015) Tetrahedron 71:1050–1057
Domingo LR, Aurell MJ, Pérez P (2014) Tetrahedron 70:4519–4525
Kanemasa S (2010) Heterocycles 82:87–200
Simonsen KB, Bayón P, Hazell RG, Gothelf KV, Jorgensen KA (1999) J Am Chem Soc 121:3845–3853
Domingo LR (2000) Eur J Org Chem 2265–2272
Sousa CAD, Vale MLC, Garcia-Mera X, Rodriguez-Borges JE (2012) Tetrahedron 68:1682–1687
Nacereddinea AK, Layeb H, Chafaa F, Yahia W, Djerourou A, Domingo LR (2015) RSC Adv 5:64098–64105
Parr RG, von Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922–1924
Domingo LR, Chamorro E, Pérez P (2008) J Org Chem 73:4615–4624
Domingo LR, Pérez P (2011) Org Biomol Chem 9:7168–7175
S. Kanemasa S, Tsuruoka T (1995) Chem Lett 49–50
Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874
Becke AD (1993) J Chem Phys 98:5648–5652
Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789
Hehre WJ, Radom L, Schleyer PVR, Pople J (1986) Ab initio Mol Orbital Theory. Wiley, New York
Schlegel HB (1982) J Comput Chem 2:214–218
Schlegel HB (1994) In modern electronic structure theory. In: Yarkony DR (ed) World Scientific Publishing, Singapore
Fukui K (1970) J Phys Chem 74:4161–4163
González C, Schlegel HB (1990) J Phys Chem 94:5523–5527
González C, Schlegel HB (1991) J Chem Phys 95:5853–5860
Tomasi J, Persico M (1994) Chem Rev 94:2027–2094
Simkin BY, Sheikhet I (1995) Quantum chemical and statistical theory of solutions—computational approach. Ellis Horwood, London
Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041
Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335
Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404–417
Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746
Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926
Lane JR, Contreras-Garcia J, Piquemal J-P, Miller BJ, Kjaergaard HG (2013) J Chem Theor Comput 9:3263–3266
Contreras-Garcia J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) J Chem Theor Comput 7:625–632
Frisch MJ et al (2009) Gaussian 09, revision A.02. Gaussian Inc, Wallingford
Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7514
Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York
Kohn W, Sham L (1965) J Phys Rev 140:1133–1138
Domingo LR, Pérez P, Sáez JA (2013) RSC Adv 3:1486–1494
Domingo LR, Chamorro E,Pérez P (2009) Eur J Org Chem 3036–3044
Domingo LR (2014) RSC Adv 4:32415–32428
Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Tetrahedron 58:4417–4423
Jaramillo P, Domingo LR, Chamorro E, Pérez P (2008) J Mol Struct (Theochem) 865:68–72
Benchouk W, Mekelleche SM, Silvi B, Aurell MJ, Domingo LR (2011) J Phys Org Chem 24:611–618
Ríos-Gutiérrez M, Pérez P, Domingo LR (2015) RSC Adv 5:58464–58477
Bader RFW, Essén HJ (1984) Chem Phys 80:1943–1960