Understanding the reaction mechanism of the Lewis acid (MgBr2)-catalysed [3+2] cycloaddition reaction between C-methoxycarbonyl nitrone and 2-propen-1-ol: a DFT study

Theoretical Chemistry Accounts - Tập 136 - Trang 1-12 - 2016
A. I. Adjieufack1, I. M. Ndassa2, J. Ketcha Mbadcam1, M. Ríos-Gutiérrez3, L. R. Domingo3
1Physical and Theoretical Chemistry Laboratory, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
2Department of Chemistry, High Teacher Training College, University of Yaoundé I, Yaoundé, Cameroon
3Department of Organic Chemistry, University of Valencia, Burjassot, Spain

Tóm tắt

The mechanism of the non-catalysed and the MgBr2-catalysed [3+2] cycloaddition (32CA) reactions between C-methoxycarbonyl nitrone and 2-propen-1-ol has been theoretically investigated within the molecular electron density theory using DFT methods at the B3LYP/6-31G(d) computational level. Analysis of DFT reactivity indices allows explaining the role of the MgBr2 Lewis acid in the catalysed 32CA reaction. The 32CA reaction between C-methoxycarbonyl nitrone and 2-propen-1-ol takes place with a relative high activation enthalpy, 13.5 kcal mol−1, as a consequence of the non-polar character of this zw-type 32CA reaction. Coordination of the MgBr2 LA to C-methoxycarbonyl nitrone accelerates the corresponding zw-type 32CA reaction by taking place through a polar mechanism and with lower activation enthalpy, 8.5 kcal mol−1. Both 32CA reactions, which take place through a one-step mechanism, are completely meta regioselective and present low exo stereoselectivity, which increases in the catalysed process. Energy and non-covalent interaction analyses at the transition-state structures indicate that the formation of an intramolecular H–Br hydrogen bond in the catalysed process could be responsible for the exo selectivity experimentally observed.

Tài liệu tham khảo

Huisgen R (1963) Angew Chem Int Ed 2:565–598 Padwa A (1984) 1, 3-Dipolar cycloaddition chemistry, vol 1-2. Wiley Interscience, New York Padwa A (2002) Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products, vol 59. Wiley, New York Gothelf KV, Jorgensen KA (1998) Chem Rev 98:863–909 Tufariello JJ (1984) 1,3-Dipolar cycloaddition chemistry. A. Padwa, Wiley, New York Torssell KBG (1988) Nitrile oxides, nitrones and nitronates in organic synthesis. VCH, New York Tufariello JJ (1979) Acc Chem Res 12:396–403 Domingo LR, Sáez JA (2009) Org Biomol Chem 7:3576–3583 Domingo LR, Emamian SR (2014) Tetrahedron 70:1267–1273 Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Tetrahedron 72:1524–1532 Domingo LR (2016) Molecules 21:1319 De Proft F, Geerlings P (2001) Chem Rev 101:1451–1464 Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Molecules 21:748 Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403 Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen J, Yang AW (2010) J Am Chem Soc 132:6498–6506 Ríos-Gutiérrez M, Domingo LR, Pérez P (2015) RSC Adv 5:84797–84809 Domingo LR, Aurell MJ, Pérez P (2015) Tetrahedron 71:1050–1057 Domingo LR, Aurell MJ, Pérez P (2014) Tetrahedron 70:4519–4525 Kanemasa S (2010) Heterocycles 82:87–200 Simonsen KB, Bayón P, Hazell RG, Gothelf KV, Jorgensen KA (1999) J Am Chem Soc 121:3845–3853 Domingo LR (2000) Eur J Org Chem 2265–2272 Sousa CAD, Vale MLC, Garcia-Mera X, Rodriguez-Borges JE (2012) Tetrahedron 68:1682–1687 Nacereddinea AK, Layeb H, Chafaa F, Yahia W, Djerourou A, Domingo LR (2015) RSC Adv 5:64098–64105 Parr RG, von Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922–1924 Domingo LR, Chamorro E, Pérez P (2008) J Org Chem 73:4615–4624 Domingo LR, Pérez P (2011) Org Biomol Chem 9:7168–7175 S. Kanemasa S, Tsuruoka T (1995) Chem Lett 49–50 Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874 Becke AD (1993) J Chem Phys 98:5648–5652 Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789 Hehre WJ, Radom L, Schleyer PVR, Pople J (1986) Ab initio Mol Orbital Theory. Wiley, New York Schlegel HB (1982) J Comput Chem 2:214–218 Schlegel HB (1994) In modern electronic structure theory. In: Yarkony DR (ed) World Scientific Publishing, Singapore Fukui K (1970) J Phys Chem 74:4161–4163 González C, Schlegel HB (1990) J Phys Chem 94:5523–5527 González C, Schlegel HB (1991) J Chem Phys 95:5853–5860 Tomasi J, Persico M (1994) Chem Rev 94:2027–2094 Simkin BY, Sheikhet I (1995) Quantum chemical and statistical theory of solutions—computational approach. Ellis Horwood, London Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041 Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335 Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404–417 Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746 Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926 Lane JR, Contreras-Garcia J, Piquemal J-P, Miller BJ, Kjaergaard HG (2013) J Chem Theor Comput 9:3263–3266 Contreras-Garcia J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) J Chem Theor Comput 7:625–632 Frisch MJ et al (2009) Gaussian 09, revision A.02. Gaussian Inc, Wallingford Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7514 Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York Kohn W, Sham L (1965) J Phys Rev 140:1133–1138 Domingo LR, Pérez P, Sáez JA (2013) RSC Adv 3:1486–1494 Domingo LR, Chamorro E,Pérez P (2009) Eur J Org Chem 3036–3044 Domingo LR (2014) RSC Adv 4:32415–32428 Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Tetrahedron 58:4417–4423 Jaramillo P, Domingo LR, Chamorro E, Pérez P (2008) J Mol Struct (Theochem) 865:68–72 Benchouk W, Mekelleche SM, Silvi B, Aurell MJ, Domingo LR (2011) J Phys Org Chem 24:611–618 Ríos-Gutiérrez M, Pérez P, Domingo LR (2015) RSC Adv 5:58464–58477 Bader RFW, Essén HJ (1984) Chem Phys 80:1943–1960