Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field

Energy and Environmental Science - Tập 8 Số 3 - Trang 995-1004
Wolfgang Tress1,2,3,4, Nevena Marinova1,2,3,4, Thomas Moehl1,2,3,4, Shaik M. Zakeeruddin1,2,3,4, Mohammad Khaja Nazeeruddin1,2,3,4, Michaël Grätzel1,2,3,4
1Laboratory of Photonics and Interfaces, Swiss Federal Institute of Technology (EPFL), Station 6, Lausanne, Switzerland
2Lausanne
3Swiss Federal Institute of Technology, (EPFL)
4Switzerland

Tóm tắt

Ionic displacement modifying the electric field in the device is found as most likely reason for the hysteresis which is examined by separating fast and slow processes and comparing devices with and without blocking layer.

Từ khóa


Tài liệu tham khảo

Kojima, 2009, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r

Burschka, 2013, Nature, 499, 316, 10.1038/nature12340

Park, 2013, J. Phys. Chem. Lett., 4, 2423, 10.1021/jz400892a

Jeon, 2014, Nat. Mater., 13, 897, 10.1038/nmat4014

Zhou, 2014, Science, 345, 542, 10.1126/science.1254050

Im, 2011, Nanoscale, 3, 4088, 10.1039/c1nr10867k

Kim, 2012, Sci. Rep., 2, 591, 10.1038/srep00591

Lee, 2012, Science, 338, 643, 10.1126/science.1228604

Xing, 2013, Science, 342, 344, 10.1126/science.1243167

Stranks, 2013, Science, 342, 341, 10.1126/science.1243982

Tress, 2014, Adv. Energy Mater., 10.1002/aenm.201400812

Dualeh, 2014, ACS Nano, 8, 362, 10.1021/nn404323g

Unger, 2014, Energy Environ. Sci., 7, 3690, 10.1039/C4EE02465F

Snaith, 2014, J. Phys. Chem. Lett., 5, 1511, 10.1021/jz500113x

Kim, 2014, J. Phys. Chem. Lett., 2927, 10.1021/jz501392m

Frost, 2014, APL Mater., 2, 081506, 10.1063/1.4890246

Kutes, 2014, J. Phys. Chem. Lett., 5, 3335, 10.1021/jz501697b

Gottesman, 2014, J. Phys. Chem. Lett., 5, 2662, 10.1021/jz501373f

Sanchez, 2014, J. Phys. Chem. Lett., 5, 2357, 10.1021/jz5011187

Friesen, 1997, Sol. Energy Mater. Sol. Cells, 48, 77, 10.1016/S0927-0248(97)00072-X

Onoda-Yamamuro, 1992, J. Phys. Chem. Solids, 53, 935, 10.1016/0022-3697(92)90121-S

Tress, 2013, Sol. Energy Mater. Sol. Cells, 117, 599, 10.1016/j.solmat.2013.07.014

Tress, 2011, Adv. Funct. Mater., 21, 2140, 10.1002/adfm.201002669

W. Tress , Organic Solar Cells – Theory, Experiment, and Device Simulation, at http://www.springer.com/materials/optical+%26+electronic+materials/book/978-3-319-10096-8

Guerrero, 2014, Appl. Phys. Lett., 105, 133902, 10.1063/1.4896779

Bergmann, 2014, Nat. Commun., 5, 5001, 10.1038/ncomms6001

Ono, 2014, J. Mater. Chem. A, 10.1039/c4ta04969a

Tress, 2013, Adv. Energy Mater., 3, 873, 10.1002/aenm.201200931

Juarez-Perez, 2014, J. Phys. Chem. Lett., 2390, 10.1021/jz5011169

Mizusaki, 1983, Solid State Ion., 11, 203, 10.1016/0167-2738(83)90025-5

Maeda, 1997, J. Phys. Soc. Jpn., 66, 1508, 10.1143/JPSJ.66.1508

H. Iwahara , in Perovskite Oxide for Solid Oxide Fuel Cells, ed. T. Ishihara, Springer US, 2009, pp. 45–63, http://link.springer.com/chapter/10.1007/978-0-387-77708-5_3

Pellet, 2014, Angew. Chem., Int. Ed., 53, 3151, 10.1002/anie.201309361

Kim, 2014, J. Phys. Chem. Lett., 1312, 10.1021/jz500370k

Niu, 2013, J. Mater. Chem. A, 2, 705, 10.1039/C3TA13606J

Ishigaki, 1988, J. Solid State Chem., 73, 179, 10.1016/0022-4596(88)90067-9

Liu, 2013, Nature, 501, 395, 10.1038/nature12509

Baumann, 2014, APL Mater., 2, 081501, 10.1063/1.4885255