Understanding the process of lithium deposition on a graphite anode for better lithium-ion batteries
Tài liệu tham khảo
Zhu, 2020, CoMoO4-N-doped carbon hybridnanoparticles loaded on a petroleum asphalt-based porous carbon for lithium storage[J], New Carbon Materials, 35, 358, 10.1016/S1872-5805(20)60494-2
Wu, 2015, Template-free preparation of mesoporous carbon from rice husks for use in supercapacitors[J], New Carbon Materials, 30, 471, 10.1016/S1872-5805(15)60201-3
Xia, 2017, Electrolytes for electrochemical energystorage[J], Materials Chemistry Frontiers, 1, 584, 10.1039/C6QM00169F
Guan, 2022, Templating synthesis of porouscarbons for energy-related applications: A review[J], New CarbonMaterials, 37, 25
Moharana, 2022, Controlling Li dendriticgrowth in graphite anodes by potassium electrolyte additives for Li-ion batteries[J], ACS Applied Materials & Interfaces, 14, 42078, 10.1021/acsami.2c11175
Armand, 2008, Building better batteries[J], Nature, 451, 652, 10.1038/451652a
Goodenough, 2013, The Li-ion rechargeable battery: Aperspective[J], Journal of the American Chemical Society, 135, 1167, 10.1021/ja3091438
Etacheri, 2011, Challenges in thedevelopment of advanced Li-ion batteries: a review[J], Energy &Environmental Science, 4, 3243, 10.1039/c1ee01598b
Palacín, 2016, Why do batteries fail[J]?, Science, 351, 10.1126/science.1253292
Wang, 2021, Research progress ongraphene-based materials for high-performance lithium-metalbatteries[J], New Carbon Materials, 36, 711, 10.1016/S1872-5805(21)60081-1
Fang, 2019, The regulating role of carbonnanotubes and graphene in lithium-Ion and lithium –sulfurbatteries[J], Advanced Materials, 31
Wakihara, 2001, Recent developments in lithium ion batteries[J], Materials Science and Engineering:R:Reports, 33, 109
Ecker, 2017, Influence of operationalcondition on lithium plating for commercial lithium-ionbatteries[J], Electrochemical experiments and post-mortem analysis. Applied Energy, 206, 934
Cai, 2021, The boundary of lithium plating ingraphite electrode for safe lithium-Ion batteries[J], AngewandteChemie International Edition, 60, 13007, 10.1002/anie.202102593
Lu, 2018, High-performance anode materials forrechargeable lithium-ion batteries[J], Electrochemical EnergyReviews, 1, 35, 10.1007/s41918-018-0001-4
Waldmann, 2018, Li plating asunwanted side reaction in commercial Li-ion cells- a review[J], Journal of Power Sources, 384, 107, 10.1016/j.jpowsour.2018.02.063
Liu, 2016, Understanding undesirable anodelithium plating issues in lithium-ion batteries[J], RSC Advances, 6, 88683, 10.1039/C6RA19482F
Li, 2014, A review of lithium depositionin lithium-ion and lithium metal secondary batteries[J], Journal of Power Sources, 254, 168, 10.1016/j.jpowsour.2013.12.099
Aurbach, 2002, A short review of failuremechanisms of lithium metal and lithiated graphite anodes in liquidelectrolyte solutions[J], Solid State Ionics, 148, 405, 10.1016/S0167-2738(02)00080-2
Persson, 2010, Lithium diffusionin graphitic carbon[J], The Journal of Physical Chemistry Letters, 1, 1176, 10.1021/jz100188d
Legrand, 2014, Physical characterization of the charging process of a Li-ion battery and prediction of Li platingby electrochemical modelling[J], Journal of Power Sources, 245, 208, 10.1016/j.jpowsour.2013.06.130
Purushothaman, 2006, Rapid charging of lithium-ionbatteries using pulsed currents: A theoretical analysis[J], Journal of The Electrochemical Society, 153, A533, 10.1149/1.2161580
Arora, 1999, Mathematical modeling of thelithium deposition overcharge reaction in lithium-Ion batteriesusing carbon-based negative electrodes[J], Journal of The Electrochemical Society, 146, 10.1149/1.1392512
Tang, 2009, Two-dimensional modeling of lithium deposition during cell charging[J], Journal of The Electrochemical Society, 156, A390, 10.1149/1.3095513
Perkins, 2012, Controls orientedreduced order modeling of lithium deposition on overcharge[J], Journal of Power Sources, 209, 318, 10.1016/j.jpowsour.2012.03.003
Hein, 2016, Influence of local lithium metal deposition in 3Dmicrostructures on local and global behavior of lithium-ionbatteries[J], Electrochimica Acta, 201, 354, 10.1016/j.electacta.2016.01.220
Waldmann, 2015, Optimization ofcharging strategy by prevention of lithium deposition on anodes inhigh-energy lithium-ion batteries[J], Electrochemical Experiments. Electrochimica Acta, 178, 525, 10.1016/j.electacta.2015.08.056
Liu, 2014, Long cycle life lithium ion battery withlithium nickel cobalt manganese oxide (NCM) cathode[J], Journalof Power Sources, 261, 285, 10.1016/j.jpowsour.2014.03.083
Waldmann, 2016, Interplay of operationalparameters on lithium deposition in lithium-ion cells: systematicmeasurements with reconstructed 3-electrode pouch full cells[J], Journal of The Electrochemical Society, 163, 10.1149/2.0591607jes
Bugga, 2010, Lithium plating behavior in lithium-ioncells[J], ECS Transactions, 25, 241, 10.1149/1.3393860
Waldmann, 2014, Temperature dependentageing mechanisms in lithium-ion batteries: A post-mortemstudy[J], Journal of Power Sources, 262, 129, 10.1016/j.jpowsour.2014.03.112
Blyr, 1998, Self-discharge of LiMn2O4/CLi-ion cells in their discharged state: understanding by means of three-electrode measurements[J], Journal of The ElectrochemicalSociety, 145, 194, 10.1149/1.1838235
Lin, 2001, Low-temperature behavior of Li-ion cells[J], Electrochemical and Solid-State Letters, 4, A71, 10.1149/1.1368736
Zhang, 2006, Study of the charging process of aLiCoO2-based Li-ion battery[J], Journal of Power Sources, 160, 1349, 10.1016/j.jpowsour.2006.02.087
Petzl, 2014, Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ionbatteries[J], Journal of Power Sources, 254, 80, 10.1016/j.jpowsour.2013.12.060
Konz, 2020, Detecting the onset of lithium plating and monitoring fast charging performance withvoltage relaxation[J], ACS Energy Letters, 5, 1750, 10.1021/acsenergylett.0c00831
Ho, 2021, 3D detection of lithiation and lithium plating in graphite anodes during fastcharging[J], ACS Nano, 15, 10480, 10.1021/acsnano.1c02942
Harris, 2010, Direct in situmeasurements of Li transport in Li-ion battery negativeelectrodes[J], Chemical Physics Letters, 485, 265, 10.1016/j.cplett.2009.12.033
Dahn, 1991, Phase diagram of LixC6[J], Physical Review B, 44, 9170, 10.1103/PhysRevB.44.9170
Gao, 2021, Interplay of lithiumintercalation and plating on a single graphite particle[J], Joule, 5, 393, 10.1016/j.joule.2020.12.020
Downie, 2013, In situ detection of lithium plating on graphite electrodes by electrochemicalcalorimetry[J], Journal of The Electrochemical Society, 160, A588, 10.1149/2.049304jes
Birkenmaier, 2015, Lithium plating ongraphite negative electrodes: Innovative qualitative and quantitativeinvestigation methods[J], Journal of The Electrochemical Society, 162, 10.1149/2.0451514jes
Bommier, 2020, In operando acoustic detectionof lithium metal plating in commercial LiCoO2/graphite pouchcells[J], Cell Reports Physical Science, 1, 10.1016/j.xcrp.2020.100035
Avdeev, 2017, Monitoring of lithium plating by neutron reflectometry[J], Applied SurfaceScience, 424, 378
Veronika, 2014, Lithium plating inlithium-ion batteries at sub-ambient temperatures investigated by insitu neutron diffraction[J], Journal of Power Sources, 271, 152, 10.1016/j.jpowsour.2014.07.168
Letellier, 2007, In situ 7Li nuclearmagnetic resonance observation of the electrochemical intercalationof lithium in graphite; 1st cycle[J], Carbon, 45, 1025, 10.1016/j.carbon.2006.12.018
Börner, 2017, Correlation of aging andthermal stability of commercial 18650-type lithium ion batteries[J], Journal of Power Sources, 342, 382, 10.1016/j.jpowsour.2016.12.041
Chang, 2015, Investigating Limicrostructure formation on Li anodes for lithium batteries by insitu 6Li/7Li NMR and SEM[J], The Journal of Physical ChemistryC, 119, 16443
Märker, 2020, Operando NMR of NMC811/graphitelithium-ion batteries: Structure, dynamics, and lithium metaldeposition[J], Journal of the American Chemical Society, 142, 17447, 10.1021/jacs.0c06727
Niemöller, 2018, EPR Imaging of metalliclithium and its application to dendrite localisation in batteryseparators[J], Scientific Reports, 8, 10.1038/s41598-018-32112-y
Pifer, 1971, Conduction-electron spin resonance in alithium film[J], Physical Review B, 3, 663, 10.1103/PhysRevB.3.663
Wandt, 2018, Quantitative and time-resolveddetection of lithium plating on graphite anodes in lithium ionbatteries[J], Materials Today, 21, 231, 10.1016/j.mattod.2017.11.001
Wang, 2021, Resolution of lithiumdeposition versus intercalation of graphite anodes in lithium ionbatteries: an in situ electron paramagnetic resonance study[J], Angewandte Chemie International Edition, 60, 21860, 10.1002/anie.202106178
Uhlmann, 2015, In situ detection of lithium metalplating on graphite in experimental cells[J], Journal of PowerSources, 279, 428
Mei, 2021, Understanding of Li-plating ongraphite electrode: Detection, quantification and mechanismrevelation[J], Energy Storage Materials, 41, 209, 10.1016/j.ensm.2021.06.013
Luo, 2018, A proof-of-concept graphite anodewith a lithium dendrite suppressing polymer coating[J], Journal of Power Sources, 406, 63, 10.1016/j.jpowsour.2018.10.002
Lyu, 2020, Carbon coated porous titanium niobium oxides as anode materials of lithium-ion batteries for extreme fast charge applications[J], ACS Applied Energy Materials, 3, 5657, 10.1021/acsaem.0c00633
Tallman, 2019, Anode overpotential controlvia interfacial modification: Inhibition of lithium plating ongraphite anodes[J], ACS Applied Materials & Interfaces, 11, 46864, 10.1021/acsami.9b16794
Yang, 2019, Minimizing carbon particle size toimprove lithium deposition on natural graphite[J], Carbon, 155, 9, 10.1016/j.carbon.2019.08.023
Yeo, 2022, Dendrite-free lithium deposition onconventional graphite anode by growth of defective carbon nanotube for lithium-metal/ion hybrid batteries[J], Journal of Materials Chemistry A, 10, 12938, 10.1039/D2TA01907H
Cannarella, 2015, The effects of defects on localizedplating in lithium-ion batteries[J], Journal of The ElectrochemicalSociety, 162
Chen, 2018, Minimization of ion-solventclusters in gel electrolytes containing graphene oxide quantum dotsfor lithium-ion batteries[J], Small, 14, 10.1002/smll.201703571
Zheng, 2015, Correlation between lithiumdeposition on graphite electrode and the capacity loss for LiFePO4/graphite cells[J], Electrochimica Acta, 173, 323, 10.1016/j.electacta.2015.05.039
McShane, 2022, Quantifyinggraphite solid-Electrolyte interphase chemistry and its impact onfast charging[J], ACS Energy Letters, 7, 2734, 10.1021/acsenergylett.2c01059
Yang, 2021, Anionic effect on enhancing thestability of a solid electrolyte interphase film for lithium depositionon graphite[J], Nano Letters, 21, 5316, 10.1021/acs.nanolett.1c01436
Park, 2009, The important role of additivesfor improved lithium ion battery safety[J], Journal of PowerSources, 189, 602
Park T R, Lee J I, Choi Y S. Investigation on optimal pulse currentcharging of lithium-ion batteries using electro-chemical model[C]. 2021 21st International Conference on Control, Automation andSystems (ICCAS), 2021, 978-1-6654-1832-4, 2642-3901.
Gao, 2019, Classification and review of thecharging strategies for commercial lithium-ion batteries[J], IEEEAccess, 7, 43511
Spingler, 2018, Optimum fast chargingof lithium-ion pouch cells based on local volume expansioncriteria[J], Journal of Power Sources, 393, 152, 10.1016/j.jpowsour.2018.04.095
Anseán, 2013, Fast charging technique forhigh power lithium iron phosphate batteries: a cycle lifeanalysis[J], Journal of Power Sources, 239, 9, 10.1016/j.jpowsour.2013.03.044
Aryanfar, 2014, Dynamics of lithiumdendrite growth and inhibition: pulse charging experiments andmonte carlo calculations[J], The Journal of Physical ChemistryLetters, 5, 1721
Peter, 2016, Charging protocols for lithium-ion batteries andtheir impact on cycle life —an experimental study with different18650 high-power cells[J], Journal of Energy Storage, 6, 125, 10.1016/j.est.2016.02.005
Notten, 2005, Boostcharging Li-ionbatteries: a challenging new charging concept[J], Journal of PowerSources, 145, 89
Amanor-Boadu, 2018, Theimpact of pulse charging parameters on the life cycle of lithium-ionpolymer batteries[J], MDPI Journal List, 11
Smith, 2006, Solid-state diffusion limitations on pulseoperation of a lithium ion cell for hybrid electric vehicles[J], Journal of Power Sources, 161, 628, 10.1016/j.jpowsour.2006.03.050
Li, 2001, The effects of pulse charging oncycling characteristics of commercial lithium-ion batteries[J], Journal of Power Sources, 102, 302, 10.1016/S0378-7753(01)00820-5
Bandhauer, 2011, A critical review of thermal issues in lithium-ion batteries[J], Journal of The Electrochemical Society, 158, R1, 10.1149/1.3515880
Onda, 2006, Thermal behavior ofsmall lithium-ion battery during rapid charge and dischargecycles[J], Journal of Power Sources, 158, 535, 10.1016/j.jpowsour.2005.08.049
Zhang, 2014, In situ measurement of radialtemperature distributions in cylindrical Li-Ion cells[J], Journal of The Electrochemical Society, 161, 10.1149/2.0051410jes
Onda, 2003, Experimental study onheat generation behavior of small lithium-ion secondarybatteries[J], Journal of The Electrochemical Society, 150, A285, 10.1149/1.1543947
Lee, 2011, In situ monitoring of temperature inside lithium-ion batteries by flexible microtemperature sensors[J], MDPI Journal List, 11, 9942
Wang, 2020, Underpotential lithium plating ongraphite anodes caused by temperature heterogeneity[J], Proceedings of the National Academy of Sciences, 117, 29453, 10.1073/pnas.2009221117
Ge, 2016, Temperature-adaptive alternatingcurrent preheating of lithium-ion batteries with lithium depositionprevention[J], Journal of The Electrochemical Society, 163, A290, 10.1149/2.0961602jes
Langdon, 2021, Crossover effects in batteries with high-nickel cathodes and lithium-metal anodes[J], Advanced FunctionalMaterials, 31
Choi, 2016, Promise and reality of post-lithium-ion batterieswith high energy densities[J], Nature Reviews Materials, 1, 10.1038/natrevmats.2016.13
Li, 2018, 30 years of lithium-ion batteries[J], Advanced Materials, 30
Li, 2014, Improving high voltage stability of lithium cobalt oxide/graphite battery via forming protective films simultaneously on anode and cathode by using electrolyteadditive[J], Electrochimica Acta, 141, 263, 10.1016/j.electacta.2014.07.085
Li, 2020, Review—an unpredictable hazard in lithium-ion batteriesfrom transition metal ions: dissolution from cathodes[J], Deposition on Anodes and Elimination Strategies. Journal of The Electrochemical Society, 167
Szczuka, 2021, Transientmorphology of lithium anodes in batteries monitored by inoperando pulse electron paramagnetic resonance[J], Communications Materials, 2, 20, 10.1038/s43246-021-00126-1
