Understanding the process of lithium deposition on a graphite anode for better lithium-ion batteries

New Carbon Materials - Tập 38 - Trang 678-693 - 2023
Yu-jie Xu1, Bing Wang1, Yi Wan1, Yi Sun1, Wan-li Wang1, Kang Sun2, Li-jun Yang3, Han Hu1, Ming-bo Wu1
1College of Chemistry and Chemical Engineering, College of New Energy State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
2Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
3Qingdao Guanbaolin Activated Carbon Co., Ltd., Qingdao 266313, China

Tài liệu tham khảo

Zhu, 2020, CoMoO4-N-doped carbon hybridnanoparticles loaded on a petroleum asphalt-based porous carbon for lithium storage[J], New Carbon Materials, 35, 358, 10.1016/S1872-5805(20)60494-2 Wu, 2015, Template-free preparation of mesoporous carbon from rice husks for use in supercapacitors[J], New Carbon Materials, 30, 471, 10.1016/S1872-5805(15)60201-3 Xia, 2017, Electrolytes for electrochemical energystorage[J], Materials Chemistry Frontiers, 1, 584, 10.1039/C6QM00169F Guan, 2022, Templating synthesis of porouscarbons for energy-related applications: A review[J], New CarbonMaterials, 37, 25 Moharana, 2022, Controlling Li dendriticgrowth in graphite anodes by potassium electrolyte additives for Li-ion batteries[J], ACS Applied Materials & Interfaces, 14, 42078, 10.1021/acsami.2c11175 Armand, 2008, Building better batteries[J], Nature, 451, 652, 10.1038/451652a Goodenough, 2013, The Li-ion rechargeable battery: Aperspective[J], Journal of the American Chemical Society, 135, 1167, 10.1021/ja3091438 Etacheri, 2011, Challenges in thedevelopment of advanced Li-ion batteries: a review[J], Energy &Environmental Science, 4, 3243, 10.1039/c1ee01598b Palacín, 2016, Why do batteries fail[J]?, Science, 351, 10.1126/science.1253292 Wang, 2021, Research progress ongraphene-based materials for high-performance lithium-metalbatteries[J], New Carbon Materials, 36, 711, 10.1016/S1872-5805(21)60081-1 Fang, 2019, The regulating role of carbonnanotubes and graphene in lithium-Ion and lithium –sulfurbatteries[J], Advanced Materials, 31 Wakihara, 2001, Recent developments in lithium ion batteries[J], Materials Science and Engineering:R:Reports, 33, 109 Ecker, 2017, Influence of operationalcondition on lithium plating for commercial lithium-ionbatteries[J], Electrochemical experiments and post-mortem analysis. Applied Energy, 206, 934 Cai, 2021, The boundary of lithium plating ingraphite electrode for safe lithium-Ion batteries[J], AngewandteChemie International Edition, 60, 13007, 10.1002/anie.202102593 Lu, 2018, High-performance anode materials forrechargeable lithium-ion batteries[J], Electrochemical EnergyReviews, 1, 35, 10.1007/s41918-018-0001-4 Waldmann, 2018, Li plating asunwanted side reaction in commercial Li-ion cells- a review[J], Journal of Power Sources, 384, 107, 10.1016/j.jpowsour.2018.02.063 Liu, 2016, Understanding undesirable anodelithium plating issues in lithium-ion batteries[J], RSC Advances, 6, 88683, 10.1039/C6RA19482F Li, 2014, A review of lithium depositionin lithium-ion and lithium metal secondary batteries[J], Journal of Power Sources, 254, 168, 10.1016/j.jpowsour.2013.12.099 Aurbach, 2002, A short review of failuremechanisms of lithium metal and lithiated graphite anodes in liquidelectrolyte solutions[J], Solid State Ionics, 148, 405, 10.1016/S0167-2738(02)00080-2 Persson, 2010, Lithium diffusionin graphitic carbon[J], The Journal of Physical Chemistry Letters, 1, 1176, 10.1021/jz100188d Legrand, 2014, Physical characterization of the charging process of a Li-ion battery and prediction of Li platingby electrochemical modelling[J], Journal of Power Sources, 245, 208, 10.1016/j.jpowsour.2013.06.130 Purushothaman, 2006, Rapid charging of lithium-ionbatteries using pulsed currents: A theoretical analysis[J], Journal of The Electrochemical Society, 153, A533, 10.1149/1.2161580 Arora, 1999, Mathematical modeling of thelithium deposition overcharge reaction in lithium-Ion batteriesusing carbon-based negative electrodes[J], Journal of The Electrochemical Society, 146, 10.1149/1.1392512 Tang, 2009, Two-dimensional modeling of lithium deposition during cell charging[J], Journal of The Electrochemical Society, 156, A390, 10.1149/1.3095513 Perkins, 2012, Controls orientedreduced order modeling of lithium deposition on overcharge[J], Journal of Power Sources, 209, 318, 10.1016/j.jpowsour.2012.03.003 Hein, 2016, Influence of local lithium metal deposition in 3Dmicrostructures on local and global behavior of lithium-ionbatteries[J], Electrochimica Acta, 201, 354, 10.1016/j.electacta.2016.01.220 Waldmann, 2015, Optimization ofcharging strategy by prevention of lithium deposition on anodes inhigh-energy lithium-ion batteries[J], Electrochemical Experiments. Electrochimica Acta, 178, 525, 10.1016/j.electacta.2015.08.056 Liu, 2014, Long cycle life lithium ion battery withlithium nickel cobalt manganese oxide (NCM) cathode[J], Journalof Power Sources, 261, 285, 10.1016/j.jpowsour.2014.03.083 Waldmann, 2016, Interplay of operationalparameters on lithium deposition in lithium-ion cells: systematicmeasurements with reconstructed 3-electrode pouch full cells[J], Journal of The Electrochemical Society, 163, 10.1149/2.0591607jes Bugga, 2010, Lithium plating behavior in lithium-ioncells[J], ECS Transactions, 25, 241, 10.1149/1.3393860 Waldmann, 2014, Temperature dependentageing mechanisms in lithium-ion batteries: A post-mortemstudy[J], Journal of Power Sources, 262, 129, 10.1016/j.jpowsour.2014.03.112 Blyr, 1998, Self-discharge of LiMn2O4/CLi-ion cells in their discharged state: understanding by means of three-electrode measurements[J], Journal of The ElectrochemicalSociety, 145, 194, 10.1149/1.1838235 Lin, 2001, Low-temperature behavior of Li-ion cells[J], Electrochemical and Solid-State Letters, 4, A71, 10.1149/1.1368736 Zhang, 2006, Study of the charging process of aLiCoO2-based Li-ion battery[J], Journal of Power Sources, 160, 1349, 10.1016/j.jpowsour.2006.02.087 Petzl, 2014, Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ionbatteries[J], Journal of Power Sources, 254, 80, 10.1016/j.jpowsour.2013.12.060 Konz, 2020, Detecting the onset of lithium plating and monitoring fast charging performance withvoltage relaxation[J], ACS Energy Letters, 5, 1750, 10.1021/acsenergylett.0c00831 Ho, 2021, 3D detection of lithiation and lithium plating in graphite anodes during fastcharging[J], ACS Nano, 15, 10480, 10.1021/acsnano.1c02942 Harris, 2010, Direct in situmeasurements of Li transport in Li-ion battery negativeelectrodes[J], Chemical Physics Letters, 485, 265, 10.1016/j.cplett.2009.12.033 Dahn, 1991, Phase diagram of LixC6[J], Physical Review B, 44, 9170, 10.1103/PhysRevB.44.9170 Gao, 2021, Interplay of lithiumintercalation and plating on a single graphite particle[J], Joule, 5, 393, 10.1016/j.joule.2020.12.020 Downie, 2013, In situ detection of lithium plating on graphite electrodes by electrochemicalcalorimetry[J], Journal of The Electrochemical Society, 160, A588, 10.1149/2.049304jes Birkenmaier, 2015, Lithium plating ongraphite negative electrodes: Innovative qualitative and quantitativeinvestigation methods[J], Journal of The Electrochemical Society, 162, 10.1149/2.0451514jes Bommier, 2020, In operando acoustic detectionof lithium metal plating in commercial LiCoO2/graphite pouchcells[J], Cell Reports Physical Science, 1, 10.1016/j.xcrp.2020.100035 Avdeev, 2017, Monitoring of lithium plating by neutron reflectometry[J], Applied SurfaceScience, 424, 378 Veronika, 2014, Lithium plating inlithium-ion batteries at sub-ambient temperatures investigated by insitu neutron diffraction[J], Journal of Power Sources, 271, 152, 10.1016/j.jpowsour.2014.07.168 Letellier, 2007, In situ 7Li nuclearmagnetic resonance observation of the electrochemical intercalationof lithium in graphite; 1st cycle[J], Carbon, 45, 1025, 10.1016/j.carbon.2006.12.018 Börner, 2017, Correlation of aging andthermal stability of commercial 18650-type lithium ion batteries[J], Journal of Power Sources, 342, 382, 10.1016/j.jpowsour.2016.12.041 Chang, 2015, Investigating Limicrostructure formation on Li anodes for lithium batteries by insitu 6Li/7Li NMR and SEM[J], The Journal of Physical ChemistryC, 119, 16443 Märker, 2020, Operando NMR of NMC811/graphitelithium-ion batteries: Structure, dynamics, and lithium metaldeposition[J], Journal of the American Chemical Society, 142, 17447, 10.1021/jacs.0c06727 Niemöller, 2018, EPR Imaging of metalliclithium and its application to dendrite localisation in batteryseparators[J], Scientific Reports, 8, 10.1038/s41598-018-32112-y Pifer, 1971, Conduction-electron spin resonance in alithium film[J], Physical Review B, 3, 663, 10.1103/PhysRevB.3.663 Wandt, 2018, Quantitative and time-resolveddetection of lithium plating on graphite anodes in lithium ionbatteries[J], Materials Today, 21, 231, 10.1016/j.mattod.2017.11.001 Wang, 2021, Resolution of lithiumdeposition versus intercalation of graphite anodes in lithium ionbatteries: an in situ electron paramagnetic resonance study[J], Angewandte Chemie International Edition, 60, 21860, 10.1002/anie.202106178 Uhlmann, 2015, In situ detection of lithium metalplating on graphite in experimental cells[J], Journal of PowerSources, 279, 428 Mei, 2021, Understanding of Li-plating ongraphite electrode: Detection, quantification and mechanismrevelation[J], Energy Storage Materials, 41, 209, 10.1016/j.ensm.2021.06.013 Luo, 2018, A proof-of-concept graphite anodewith a lithium dendrite suppressing polymer coating[J], Journal of Power Sources, 406, 63, 10.1016/j.jpowsour.2018.10.002 Lyu, 2020, Carbon coated porous titanium niobium oxides as anode materials of lithium-ion batteries for extreme fast charge applications[J], ACS Applied Energy Materials, 3, 5657, 10.1021/acsaem.0c00633 Tallman, 2019, Anode overpotential controlvia interfacial modification: Inhibition of lithium plating ongraphite anodes[J], ACS Applied Materials & Interfaces, 11, 46864, 10.1021/acsami.9b16794 Yang, 2019, Minimizing carbon particle size toimprove lithium deposition on natural graphite[J], Carbon, 155, 9, 10.1016/j.carbon.2019.08.023 Yeo, 2022, Dendrite-free lithium deposition onconventional graphite anode by growth of defective carbon nanotube for lithium-metal/ion hybrid batteries[J], Journal of Materials Chemistry A, 10, 12938, 10.1039/D2TA01907H Cannarella, 2015, The effects of defects on localizedplating in lithium-ion batteries[J], Journal of The ElectrochemicalSociety, 162 Chen, 2018, Minimization of ion-solventclusters in gel electrolytes containing graphene oxide quantum dotsfor lithium-ion batteries[J], Small, 14, 10.1002/smll.201703571 Zheng, 2015, Correlation between lithiumdeposition on graphite electrode and the capacity loss for LiFePO4/graphite cells[J], Electrochimica Acta, 173, 323, 10.1016/j.electacta.2015.05.039 McShane, 2022, Quantifyinggraphite solid-Electrolyte interphase chemistry and its impact onfast charging[J], ACS Energy Letters, 7, 2734, 10.1021/acsenergylett.2c01059 Yang, 2021, Anionic effect on enhancing thestability of a solid electrolyte interphase film for lithium depositionon graphite[J], Nano Letters, 21, 5316, 10.1021/acs.nanolett.1c01436 Park, 2009, The important role of additivesfor improved lithium ion battery safety[J], Journal of PowerSources, 189, 602 Park T R, Lee J I, Choi Y S. Investigation on optimal pulse currentcharging of lithium-ion batteries using electro-chemical model[C]. 2021 21st International Conference on Control, Automation andSystems (ICCAS), 2021, 978-1-6654-1832-4, 2642-3901. Gao, 2019, Classification and review of thecharging strategies for commercial lithium-ion batteries[J], IEEEAccess, 7, 43511 Spingler, 2018, Optimum fast chargingof lithium-ion pouch cells based on local volume expansioncriteria[J], Journal of Power Sources, 393, 152, 10.1016/j.jpowsour.2018.04.095 Anseán, 2013, Fast charging technique forhigh power lithium iron phosphate batteries: a cycle lifeanalysis[J], Journal of Power Sources, 239, 9, 10.1016/j.jpowsour.2013.03.044 Aryanfar, 2014, Dynamics of lithiumdendrite growth and inhibition: pulse charging experiments andmonte carlo calculations[J], The Journal of Physical ChemistryLetters, 5, 1721 Peter, 2016, Charging protocols for lithium-ion batteries andtheir impact on cycle life —an experimental study with different18650 high-power cells[J], Journal of Energy Storage, 6, 125, 10.1016/j.est.2016.02.005 Notten, 2005, Boostcharging Li-ionbatteries: a challenging new charging concept[J], Journal of PowerSources, 145, 89 Amanor-Boadu, 2018, Theimpact of pulse charging parameters on the life cycle of lithium-ionpolymer batteries[J], MDPI Journal List, 11 Smith, 2006, Solid-state diffusion limitations on pulseoperation of a lithium ion cell for hybrid electric vehicles[J], Journal of Power Sources, 161, 628, 10.1016/j.jpowsour.2006.03.050 Li, 2001, The effects of pulse charging oncycling characteristics of commercial lithium-ion batteries[J], Journal of Power Sources, 102, 302, 10.1016/S0378-7753(01)00820-5 Bandhauer, 2011, A critical review of thermal issues in lithium-ion batteries[J], Journal of The Electrochemical Society, 158, R1, 10.1149/1.3515880 Onda, 2006, Thermal behavior ofsmall lithium-ion battery during rapid charge and dischargecycles[J], Journal of Power Sources, 158, 535, 10.1016/j.jpowsour.2005.08.049 Zhang, 2014, In situ measurement of radialtemperature distributions in cylindrical Li-Ion cells[J], Journal of The Electrochemical Society, 161, 10.1149/2.0051410jes Onda, 2003, Experimental study onheat generation behavior of small lithium-ion secondarybatteries[J], Journal of The Electrochemical Society, 150, A285, 10.1149/1.1543947 Lee, 2011, In situ monitoring of temperature inside lithium-ion batteries by flexible microtemperature sensors[J], MDPI Journal List, 11, 9942 Wang, 2020, Underpotential lithium plating ongraphite anodes caused by temperature heterogeneity[J], Proceedings of the National Academy of Sciences, 117, 29453, 10.1073/pnas.2009221117 Ge, 2016, Temperature-adaptive alternatingcurrent preheating of lithium-ion batteries with lithium depositionprevention[J], Journal of The Electrochemical Society, 163, A290, 10.1149/2.0961602jes Langdon, 2021, Crossover effects in batteries with high-nickel cathodes and lithium-metal anodes[J], Advanced FunctionalMaterials, 31 Choi, 2016, Promise and reality of post-lithium-ion batterieswith high energy densities[J], Nature Reviews Materials, 1, 10.1038/natrevmats.2016.13 Li, 2018, 30 years of lithium-ion batteries[J], Advanced Materials, 30 Li, 2014, Improving high voltage stability of lithium cobalt oxide/graphite battery via forming protective films simultaneously on anode and cathode by using electrolyteadditive[J], Electrochimica Acta, 141, 263, 10.1016/j.electacta.2014.07.085 Li, 2020, Review—an unpredictable hazard in lithium-ion batteriesfrom transition metal ions: dissolution from cathodes[J], Deposition on Anodes and Elimination Strategies. Journal of The Electrochemical Society, 167 Szczuka, 2021, Transientmorphology of lithium anodes in batteries monitored by inoperando pulse electron paramagnetic resonance[J], Communications Materials, 2, 20, 10.1038/s43246-021-00126-1