Understanding the molecular evolution of tiger diversity through DNA barcoding marker ND4 and NADH dehydrogenase complex using computational biology

Springer Science and Business Media LLC - Tập 43 - Trang 759-773 - 2021
Chiranjib Chakraborty1,2, Ashish Ranjan Sharma1, Garima Sharma3, Manojit Bhattacharya1, Bidhan C. Patra4, Bimal Kumar Sarkar5, Saptarshi Banerjee6, Kankana Banerjee6, Sang-Soo Lee1,7
1Institute For Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
2Department of Biotechnology, Adamas University, North, Kolkata, India
3Department of Biomedical Science, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
4Department of Zoology, Vidyasagar University, Midnapore, India
5Department of Physics, Adamas University, North, Kolkata, India
6School of Biosciences and Technology, VIT University, Vellore, India
7Institute for Skeletal Aging and Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Republic of Korea

Tóm tắt

Currently, Tigers (the top predator of an ecosystem) are on the list of endangered species. Thus the need is to understand the tiger's population genomics to design their conservation strategies. We analyzed the molecular evolution of tiger diversity using NADH dehydrogenase subunit 4 (ND4), a significant electron transport chain component. We have analyzed nucleotide composition and distribution pattern of ND genes, molecular evolution, evolutionary conservation pattern and conserved blocks of NADH, phylogenomics of ND4, and estimating species divergence, etc., using different bioinformatics tools and software, and MATLAB programming and computing environment. The nucleotide composition and distribution pattern of ND genes in the tiger genome demonstrated an increase in the number of adenine (A) and a lower trend of A+T content in some place of the distribution analysis. However, the observed distributions were not significant (P > 0.05). Evolutionary conservation analysis showed three highly align blocks (186 to 198, 406 to 416, and 527 to 545). On mapping the molecular evolution of ND4 among model species (n = 30), we observed its presence in a broader range of species. ND4 based molecular evolution of tiger diversity and time divergence for a tiger (20 different other species) shows that genus Panthera originated more or less at a similar time. The nucleotide composition and nucleotide distribution pattern of tiger ND genes showed the evolutionary pattern and origin of tiger and Panthera lineage concerning the molecular clock, which will help to understand their adaptive evolution.

Tài liệu tham khảo

Agnarsson I, May-Collado LJ (2008) The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies. Mol Phylogen Evolut 48:964–985. https://doi.org/10.1016/j.ympev.2008.05.046 Aliabadian M (2014) Appraisal of the entire mitochondrial genome for DNA barcoding in birds. Progress Biol Sci 4 pp 167–168 Anderson S et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465 Anisimova M, Bielawski JP, Yang Z (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18:1585–1592 Baillie J et al (1996) 1996 IUCN red list of threatened animals. IUCN Gland, Switzerland, Cambridge, Kelvyn Press, UK. ISBN:2-8317-0335-2 Bergmann T, Rach J, Damm S, Desalle R, Schierwater B, Hadrys H (2013) The potential of distance-based thresholds and character-based DNA barcoding for defining problematic taxonomic entities by CO1 and ND1. Mol Ecol Resour 13:1069–1081. https://doi.org/10.1111/1755-0998.12125 Bhattacharya M, Sharma AR, Patra BC, Sharma G, Seo EM, Nam JS, Chakraborty C, Lee SS (2016) DNA barcoding to fishes: current status and future directions. Mitochondrial DNA Part A. 3 27(4):2744–2752 Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180 Boeckmann B, Robinson-Rechavi M, Xenarios I, Dessimoz C (2011) Conceptual framework and pilot study to benchmark phylogenomic databases based on reference gene trees. Brief Bioinform 12:423–435. https://doi.org/10.1093/bib/bbr034 Books L (2010) Subfamily panterinae: genus panthera, panthera tigris, panthera leo, panthera schaubi, panthera palaeosinensis, panthera youngi. General Books LLC Bridges H, Birrell J, Hirst J (2011) The mitochondrial-encoded subunits of respiratory complex I (NADH: ubiquinone oxidoreductase): identifying residues important in mechanism and disease. Biochem Soc Trans 39:799 Cameron SL, Lambkin CL, Barker SC, Whiting MF (2007) A mitochondrial genome phylogeny of Diptera: whole genome sequence data accurately resolve relationships over broad timescales with high precision. Syst Entomol 32:40–59 Chakraborty C, Roy SS, Hsu MJ, Agoramoorthy G (2012) Can computational biology improve the phylogenetic analysis of insulin? Comput Methods Programs Biomed 108:860–872. https://doi.org/10.1016/j.cmpb.2011.12.001 Chakraborty C, Doss CG, Patra BC, Bandyopadhyay S (2014) DNA barcoding to map the microbial communities: current advances and future directions. Appl Microbiol Biotechnol 98(8):3425–3436 Cho YS et al (2013) The tiger genome and comparative analysis with lion and snow leopard genomes. Nat Commun 4:2433. https://doi.org/10.1038/ncomms3433 Clary DO, Wolstenholme DR (1987) Drosophila mitochondrial DNA: conserved sequences in the A + T-rich region and supporting evidence for a secondary structure model of the small ribosomal RNA. J Mol Evol 25:116–125 Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190. https://doi.org/10.1101/gr.849004 Damm F et al (2011) Prognostic implications and molecular associations of NADH dehydrogenase subunit 4 (ND4) mutations in acute myeloid leukemia. Leukemia 26:289–295 Dereeper A et al (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469. https://doi.org/10.1093/nar/gkn180 DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668. https://doi.org/10.1056/NEJMra022567 Eisen JA, Fraser CM (2003) Phylogenomics: intersection of evolution and genomics. Science 300:1706–1707. https://doi.org/10.1126/science.1086292 Erler S, Ferenz H-J, Moritz RFA, Kaatz H-H (2010) Analysis of the mitochondrial genome of Schistocerca gregaria gregaria (Orthoptera: Acrididae). Biol J Linnean Soc 99:296–305. https://doi.org/10.1111/j.1095-8312.2009.01365.x Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752 Galimberti A et al (2012) Integrative taxonomy at work: DNA barcoding of taeniids harboured by wild and domestic cats. Mol Ecol Resour 12:403–413. https://doi.org/10.1111/j.1755-0998.2011.03110.x Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, Ben-Tal N (2003) ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19:163–164 Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 Haag-Liautard C, Coffey N, Houle D, Lynch M, Charlesworth B, Keightley PD (2008) Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster. PLoS Biol 6:e204. https://doi.org/10.1371/journal.pbio.0060204 Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PD (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA 103:968–971. https://doi.org/10.1073/pnas.0510466103 Hedges SB, Dudley J, Kumar S (2006) TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22:2971–2972. https://doi.org/10.1093/bioinformatics/btl505 Hendrich L, Pons J, Ribera I, Balke M (2010) Mitochondrial cox1 sequence data reliably uncover patterns of insect diversity but suffer from high lineage-idiosyncratic error rates. PLoS ONE 5:e14448. https://doi.org/10.1371/journal.pone.0014448 Holmes S (2003) Bootstrapping phylogenetic trees: theory and methods. Stat Sci 18:241–255 Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314. https://doi.org/10.1126/science.1065889 Hugall A, Stanton J, Moritz C (1997) Evolution of the AT-rich mitochondrial DNA of the root knot nematode, Meloidogyne hapla. Mol Biol Evol 14:40–48 Janczewski DN, Modi WS, Stephens JC, O’Brien SJ (1995) Molecular evolution of mitochondrial 12S RNA and cytochrome b sequences in the pantherine lineage of Felidae. Mol Biol Evol 12:690–707 Johnson WE, O’Brien SJ (1997) Phylogenetic reconstruction of the Felidae using 16S rRNA and NADH-5 mitochondrial genes. J Mol Evol 44(Suppl 1):S98–S116 Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298. https://doi.org/10.1093/bib/bbn013 Kitchener AC, Dugmore AJ (2000) Biogeographical change in the tiger, Panthera tigris. Anim Conserv 3:113–124 Koike K, Kobayashi M, Yaginuma K, Taira M, Yoshida E, Imai M (1982) Nucleotide sequence and evolution of the rat mitochondrial cytochrome b gene containing the ochre termination codon. Gene 20:177–185 Lenka N, Vijayasarathy C, Mullick J, Avadhani NG (1998) Structural organization and transcription regulation of nuclear genes encoding the mammalian cytochrome c oxidase complex. Progress Nucleic Acid Res Mol Biol 61:309–344 Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128. https://doi.org/10.1093/bioinformatics/btl529 Li H et al (2006) TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res 34:D572–D580. https://doi.org/10.1093/nar/gkj118 Li H, Gao J, Liu H, Liang A, Zhou X, Cai W (2011) The architecture and complete sequence of mitochondrial genome of an assassin bug Agriosphodrus dohrni (Hemiptera: Reduviidae). Int J Biol Sci 7:792–804 Lopez JV, Culver M, Stephens JC, Johnson WE, O’Brien SJ (1997) Rates of nuclear and cytoplasmic mitochondrial DNA sequence divergence in mammals. Mol Biol Evol 14:277–286 Luo SJ et al (2004) Phylogeography and genetic ancestry of tigers (Panthera tigris). PLoS Biol 2:e442. https://doi.org/10.1371/journal.pbio.0020442 Martin AP (1995) Metabolic rate and directional nucleotide substitution in animal mitochondrial DNA. Mol Biol Evol 12:1124–1131 Mittal R, Jain BN, Patney RK (1994) Finding nonfaulty subtrees in faulty binary tree architectures. Microelectron Reliab 34:1301–1310 Miyazaki J, de Oliveira ML, Fujita Y, Matsumoto H, Fujiwara Y (2010) Evolutionary process of deep-sea bathymodiolus mussels. PLoS ONE 5:e10363. https://doi.org/10.1371/journal.pone.0010363 Moritz C (1994) Defining “Evolutionarily Significant Units” for conservation. Trends Ecol Evol 9:373–375. https://doi.org/10.1016/0169-5347(94)90057-4 Nardi F, Spinsanti G, Boore JL, Carapelli A, Dallai R, Frati F (2003) Hexapod origins: monophyletic or paraphyletic? Science 299:1887–1889. https://doi.org/10.1126/science.1078607 Ning T, Xiao H, Li J, Hua S, Zhang YP (2010) Adaptive evolution of the mitochondrial ND6 gene in the domestic horse. Genetics Mol Res 9:144–150. https://doi.org/10.4238/vol9-1gmr705 Nowell KPJ (1996) Wild cats: status survey and conservation action plan. Gland, Switzerland Park YC (2011) The complete mitochondrial genome sequence of the Amur leopard cat, Prionailurus bengalensis euptilurus. Mitochondrial DNA 22:89–90. https://doi.org/10.3109/19401736.2011.624607 Robert Hanner DS, Ward B, Hebert P (2005) Fish Barcode of Life (FISH-BOL). Biodiversity Institute of Ontario University of Guelph, Canada Rodrigues MT, Bertolotto CEV, Amaro RC, Yonenaga-Yassuda Y, Freire EMX, Pellegrino KCM (2014) Molecular phylogeny, species limits, and biogeography of the Brazilian endemic lizard genus Enyalius (Squamata: Leiosauridae): an example of the historical relationship between Atlantic Forests and Amazonia. Mol Phylogen Evol 81:137–146 Sayers EW et al (2011) Database resources of the national center for biotechnology information. Nucleic Acids Res 39:D38-51. https://doi.org/10.1093/nar/gkq1172 Schreiber F, Patricio M, Muffato M, Pignatelli M, Bateman A (2014) TreeFam v9: a new website, more species and orthology-on-the-fly. Nucleic Acids Res 42:D922–D925. https://doi.org/10.1093/nar/gkt1055 Sharma AR et al (2014) Computational biophysical, biochemical, and evolutionary signature of human R-spondin family proteins, the member of canonical Wnt/beta-catenin signaling pathway. BioMed Res Int 2014:974316. https://doi.org/10.1155/2014/974316 Sjolander K (2004) Phylogenomic inference of protein molecular function: advances and challenges. Bioinformatics 20:170–179 Slattery JP, Johnson WE, Goldman D, O’Brien SJ (1994) Phylogenetic reconstruction of South American felids defined by protein electrophoresis. J Mol Evol 39:296–305 Soares P et al (2009) Correcting for purifying selection: an improved human mitochondrial molecular clock. Am J Hum Genet 84:740–759. https://doi.org/10.1016/j.ajhg.2009.05.001 Soon V, Budrys E, Orlovskyte S, Paukkunen J, Odegaard F, Ljubomirov T, Saarma U (2014) Testing the validity of Northern European species in the Chrysis ignita species group (Hymenoptera: Chrysididae) with DNA barcoding. Zootaxa 3786:301–330. https://doi.org/10.11646/zootaxa.3786.3.4 Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577. https://doi.org/10.1080/10635150701472164 Timmermans MJ et al (2010) Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Res 38:e197. https://doi.org/10.1093/nar/gkq807 Tsujino F, Kosemura A, Inohira K, Hara T, Otsuka YF, Obara MK, Matsuura ET (2002) Evolution of the A+T-rich region of mitochondrial DNA in the melanogaster species subgroup of Drosophila. J Mol Evol 55:573–583. https://doi.org/10.1007/s00239-002-2353-x Vences M, Thomas M, Bonett RM, Vieites DR (2005) Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philos Trans Roy Soc Lond Ser B 360:1859–1868. https://doi.org/10.1098/rstb.2005.1717 Walker JE (1992) The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Quart Rev Biophys 25:253–324 Wallace DC (1992) Diseases of the mitochondrial DNA. Annu Rev Biochem 61:1175–1212 Wei L, Wu X, Zhu L, Jiang Z (2011) Mitogenomic analysis of the genus Panthera Science China. Life Sci 54:917–930. https://doi.org/10.1007/s11427-011-4219-1 Wentzel JSC, Johnson WE, Menotti-Raymond M, Pecon-Slattery J et al (1999) Subspecies of tigers: molecular assessment using “voucher specimens” of geographically traceable individuals. In: Seidensticker JCS, Jackson P (eds) Riding the tiger: tiger conservation in human-dominated landscapes. Cambridge University Press, Cambridge, pp 20–49 Wu X, Zheng T, Jiang Z, Wei L (2007) The mitochondrial genome structure of the clouded leopard (Neofelis nebulosa). Genome/National Research Council Canada = Genome/Conseil national de recherches Canada 50:252–257. https://doi.org/10.1139/g06-143 Yu L, Wang X, Ting N, Zhang Y (2011) Mitogenomic analysis of Chinese snub-nosed monkeys: Evidence of positive selection in NADH dehydrogenase genes in high-altitude adaptation. Mitochondrion 11:497–503. https://doi.org/10.1016/j.mito.2011.01.004 Zhou X et al (2010) Very high penetrance and occurrence of Leber’s hereditary optic neuropathy in a large Han Chinese pedigree carrying the ND4 G11778A mutation. Mol Genetics Metab 100:379–384. https://doi.org/10.1016/j.ymgme.2010.04.013