Understanding the linkage between regional climatology and cave geochemical parameters to calibrate speleothem proxies in Madagascar
Tài liệu tham khảo
Abramovich, 2002, Age and paleoenvironment of the Maastrichtian to Paleocene of the Mahajanga Basin, Madagascar: a multidisciplinary approach, Mar. Micropaleontol., 47, 17, 10.1016/S0377-8398(02)00094-4
Atsawawaranunt, 2018, The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems, Earth Syst. Sci. Data, 10, 1687, 10.5194/essd-10-1687-2018
Baker, 2019, Global analysis reveals climatic controls on the oxygen isotope composition of cave drip water, Nat. Commun., 10, 1, 10.1038/s41467-019-11027-w
Bergel, 2017, Constraining the subsoil carbon source to cave-air CO2 and speleothem calcite in central Texas, Geochim. Cosmochim. Acta, 217, 112, 10.1016/j.gca.2017.08.017
Bowen
Bowen, 2003, Interpolating the isotopic composition of modern meteoric precipitation: isotopic composition of modern precipitation, Water Resour. Res., 39, 10.1029/2003WR002086
Bowen, G.J., Wilkinson, B., 2002. Spatial distribution of δ18O in meteoric precipitation 4.
Bowen, 2005, Global application of stable hydrogen and oxygen isotopes to wildlife forensics, Oecologia, 143, 337, 10.1007/s00442-004-1813-y
Breecker, 2012, The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation, Geochim. Cosmochim. Acta, 96, 230, 10.1016/j.gca.2012.08.023
Breitenbach, 2015, Cave ventilation and rainfall signals in dripwater in a monsoonal setting – a monitoring study from NE India, Chem. Geol., 402, 111, 10.1016/j.chemgeo.2015.03.011
Brook, 1999, A high-resolution proxy record of rainfall and ENSO since AD 1550 from layering in stalagmites from Anjohibe Cave, Madagascar, The Holocene, 9, 695, 10.1191/095968399677907790
Burns, 2016, Rapid human-induced landscape transformation in Madagascar at the end of the first millennium of the Common Era, Quat. Sci. Rev., 134, 92, 10.1016/j.quascirev.2016.01.007
Cross, 2015, Great Basin hydrology, paleoclimate, and connections with the North Atlantic: a speleothem stable isotope and trace element record from Lehman Caves, NV, Quat. Sci. Rev., 127, 186, 10.1016/j.quascirev.2015.06.016
Daëron, 2019, Most Earth-surface calcites precipitate out of isotopic equilibrium, Nat. Commun., 10, 1, 10.1038/s41467-019-08336-5
Dansgaard, 1964, Stable isotopes in precipitation, Tellus, 16, 436, 10.1111/j.2153-3490.1964.tb00181.x
Deininger, 2012, Isotope disequilibrium effects: the influence of evaporation and ventilation effects on the carbon and oxygen isotope composition of speleothems – a model approach, Geochim. Cosmochim. Acta, 96, 57, 10.1016/j.gca.2012.08.013
Dietzel, 2009, Oxygen isotopic fractionation during inorganic calcite precipitation — effects of temperature, precipitation rate and pH, Chem. Geol., 268, 107, 10.1016/j.chemgeo.2009.07.015
Drăguşin, 2017, Transfer of environmental signals from the surface to the underground at Ascunsă Cave, Romania, Hydrol. Earth Syst. Sci., 21, 5357, 10.5194/hess-21-5357-2017
Epstein, 1953, Variation of O18 content of waters from natural sources, Geochim. Cosmochim. Acta, 4, 213, 10.1016/0016-7037(53)90051-9
Fairchild, 2012
Fairchild, 2009, Trace elements in speleothems as recorders of environmental change, Quat. Sci. Rev., 28, 449, 10.1016/j.quascirev.2008.11.007
Fairchild, 1996, Spatial and temporal variations in water and stalactite chemistry in currently active caves: a precursor to interpretations of past climate, 229
Fairchild, I.J., Borsato, A., Tooth, A.F., Frisia, S., Hawkesworth, C.J., Huang, Y., McDermott, F., Spiro, B., 2000. Controls on trace element (Sr–Mg) compositions of carbonate cave waters: implications for speleothem climatic records 15.
Fairchild, 2001, Annual to sub-annual resolution of multiple trace-element trends in speleothems, J. Geol. Soc., 158, 831, 10.1144/jgs.158.5.831
Fohlmeister, 2020, Main controls on the stable carbon isotope composition of speleothems, Geochim. Cosmochim. Acta, 279, 67, 10.1016/j.gca.2020.03.042
Gillikin, 2007, Determination of δ18O of water and δ13C of dissolved inorganic carbon using a simple modification of an elemental analyser-isotope ratio mass spectrometer: an evaluation, Rapid Commun. Mass Spectrom., 21, 1475, 10.1002/rcm.2968
Huang, 2001, Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy), Chem. Geol., 175, 429, 10.1016/S0009-2541(00)00337-5
IAEA/WMO
IFRC (International Federation of Red Cross And Red Crescent Societies)
James, 2015, A global model for cave ventilation and seasonal bias in speleothem paleoclimate records, Geochem. Geophys. Geosyst., 16, 1044, 10.1002/2014GC005658
Jasechko, 2015, Intensive rainfall recharges tropical groundwaters, Environ. Res. Lett., 10, 10.1088/1748-9326/10/12/124015
Johnson, 2006, Seasonal trace-element and stable-isotope variations in a Chinese speleothem: the potential for high-resolution paleomonsoon reconstruction, Earth Planet. Sci. Lett., 244, 394, 10.1016/j.epsl.2006.01.064
Johnston, 2013, Stable isotopes in caves over altitudinal gradients: fractionation behaviour and inferences for speleothem sensitivity to climate change, Clim. Past, 9, 99, 10.5194/cp-9-99-2013
Kim, 1997, Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates, Geochim. Cosmochim. Acta, 61, 3461, 10.1016/S0016-7037(97)00169-5
Kim, 2007, Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2+ concentration, Geochim. Cosmochim. Acta, 71, 4704, 10.1016/j.gca.2007.04.019
Kurita, 2009, The relationship between the isotopic content of precipitation and the precipitation amount in tropical regions, J. Geochem. Explor., 102, 113, 10.1016/j.gexplo.2009.03.002
Lachniet, 2009, Climatic and environmental controls on speleothem oxygen-isotope values, Quat. Sci. Rev., 28, 412, 10.1016/j.quascirev.2008.10.021
Lee, 2012, Asian monsoon hydrometeorology from TES and SCIAMACHY water vapor isotope measurements and LMDZ simulations: implications for speleothem climate record interpretation: ASIAN MONSOON ISOTOPES, J. Geophys. Res., 117, D15112
Li, H., Sinha, A., Anquetil André, A., Spötl, C., Vonhof, H.B., Meunier, A., Kathayat, G., Duan, P., Voarintsoa, N.R.G., Ning, Y., Biswas, J., Hu, P., Li, X., Sha, L., Zhao, J., Edwards, R.L., Cheng, H., 2020. A multimillennial climatic context for the megafaunal extinctions in Madagascar and Mascarene Islands. Sci. Adv. 6, eabb2459. doi:https://doi.org/10.1126/sciadv.abb2459.
Lorens, 1981, Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate, Geochim. Cosmochim. Acta, 45, 553, 10.1016/0016-7037(81)90188-5
Markowska, 2020, Modern speleothem oxygen isotope hydroclimate records in water-limited SE Australia, Geochim. Cosmochim. Acta, 270, 431, 10.1016/j.gca.2019.12.007
Mattey, 2008, A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: reconstructed drip water and relationship to local precipitation, Earth Planet. Sci. Lett., 269, 80, 10.1016/j.epsl.2008.01.051
McDermott, 2004, Palaeo-climate reconstruction from stable isotope variations in speleothems: a review, Quat. Sci. Rev., 23, 901, 10.1016/j.quascirev.2003.06.021
McMillan, 2005, Annual trace element cycles in calcite-aragonite speleothems: evidence of drought in the western Mediterranean 1200–1100 yr BP, J. Quat. Sci., 20, 423, 10.1002/jqs.943
Meteoblue
Middleton, 2002, Karst and caves of Madagascar, Cave Karst Sci., 29, 13
Moreno, 2014, Climate controls on rainfall isotopes and their effects on cave drip water and speleothem growth: the case of Molinos cave (Teruel, NE Spain), Clim. Dyn., 43, 221, 10.1007/s00382-014-2140-6
Morse, 1990, Partition coefficients in calcite: examination of factors influencing the validity of experimental results and their application to natural systems, Chem. Geol., 82, 265, 10.1016/0009-2541(90)90085-L
NASA Earth Observatory
Nava-Fernandez, 2020, Pacific climate reflected in Waipuna Cave drip water hydrochemistry, Hydrol. Earth Syst. Sci., 24, 3361, 10.5194/hess-24-3361-2020
Oster, 2012, Response of a modern cave system to large seasonal precipitation variability, Geochim. Cosmochim. Acta, 91, 92, 10.1016/j.gca.2012.05.027
Paquette, 1995, Relationship between surface structure, growth mechanism, and trace element incorporation in calcite, Geochim. Cosmochim. Acta, 59, 735, 10.1016/0016-7037(95)00004-J
Parkhurst, 1999
Railsback, 2018, A multi-proxy climate record from a northwestern Botswana stalagmite suggesting wetness late in the Little Ice Age (1810–1820 CE) and drying thereafter in response to changing migration of the tropical rain belt or ITCZ, Palaeogeogr. Palaeoclimatol. Palaeoecol., 506, 139, 10.1016/j.palaeo.2018.06.029
Ridley, 2015, High-resolution monitoring of Yok Balum Cave, Belize: an investigation of seasonal ventilation regimes and the atmospheric and drip-flow response to a local earthquake, J. Cave Karst Stud., 77, 183, 10.4311/2014ES0117
Riechelmann, 2019, Ventilation and cave air PCO2 in the Bunker-Emst Cave System (NW Germany): implications for speleothem proxy data, J. Cave Karst Stud., 81, 98, 10.4311/2018ES0110
Risi, 2008, Influence of convective processes on the isotopic composition (δ18O and δ D) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect, J. Geophys. Res., 113
Rogers, 2000, Stratigraphic analysis of Upper Cretaceous rocks in the Mahajanga Basin, northwestern Madagascar: implications for ancient and modern faunas, J. Geol., 108, 275, 10.1086/314403
Romanek, 1992, Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate, Geochim. Cosmochim. Acta, 56, 419, 10.1016/0016-7037(92)90142-6
Rossi, 1975, Le karst de Narinda (Madagascar), Bulletin de l’Association de Géographes Français, 52, 299, 10.3406/bagf.1975.4860
Rozanski, 2013, Isotopic patterns in modern global precipitation, 1, 10.1029/GM078p0001
Rubel, 2010, Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification, Meteorol. Z., 19, 135, 10.1127/0941-2948/2010/0430
Rutlidge, 2014, Dripwater organic matter and trace element geochemistry in a semi-arid karst environment: implications for speleothem paleoclimatology, Geochim. Cosmochim. Acta, 135, 217, 10.1016/j.gca.2014.03.036
Sánchez-Cañete, 2013, Cave ventilation is influenced by variations in the CO₂-dependent virtual temperature, Int. J. Speleol., 42, 1, 10.5038/1827-806X.42.1.1
Sherwin, 2011, Cave air and hydrological controls on prior calcite precipitation and stalagmite growth rates: implications for palaeoclimate reconstructions using speleothems, Geochim. Cosmochim. Acta, 75, 3915, 10.1016/j.gca.2011.04.020
Sinclair, 2011, Two mathematical models of Mg and Sr partitioning into solution during incongruent calcite dissolution, Chem. Geol., 283, 119, 10.1016/j.chemgeo.2010.05.022
Sletten, 2013, A petrographic and geochemical record of climate change over the last 4600years from a northern Namibia stalagmite, with evidence of abruptly wetter climate at the beginning of southern Africa’s Iron Age, Palaeogeogr. Palaeoclimatol. Palaeoecol., 376, 149, 10.1016/j.palaeo.2013.02.030
Smith, 2015, Drip water electrical conductivity as an indicator of cave ventilation at the event scale, Sci. Total Environ., 532, 517, 10.1016/j.scitotenv.2015.06.037
Stumm, 1996, Aquatic chemistry: chemical equilibria and rates in natural waters
Treble, 2015, Impacts of cave air ventilation and in-cave prior calcite precipitation on Golgotha Cave dripwater chemistry, southwest Australia, Quat. Sci. Rev., 127, 61, 10.1016/j.quascirev.2015.06.001
Tremaine, 2011, Speleothem calcite farmed in situ: modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system, Geochim. Cosmochim. Acta, 75, 4929, 10.1016/j.gca.2011.06.005
Tremaine, 2016, A two-year automated dripwater chemistry study in a remote cave in the tropical south Pacific: using [Cl−] as a conservative tracer for seasalt contribution of major cations, Geochim. Cosmochim. Acta, 184, 289, 10.1016/j.gca.2016.03.029
Vieten, 2016, Seasonal temperature variations controlling cave ventilation processes in Cueva Larga, Puerto Rico, Int. J. Speleol., 45, 259, 10.5038/1827-806X.45.3.1983
Voarintsoa, N.R.G., n.d. The Malagasy monsoon over the Holocene: a review from speleothem δ18Oc records. Malagasy Nature Special Issue, in press.
Voarintsoa, 2017, Stalagmite multi-proxy evidence of wet and dry intervals in northeastern Namibia: linkage to latitudinal shifts of the Inter-Tropical Convergence Zone and changing solar activity from AD 1400 to 1950, The Holocene, 27, 384, 10.1177/0959683616660170
Voarintsoa, 2017, Three distinct Holocene intervals of stalagmite deposition and nondeposition revealed in NW Madagascar, and their paleoclimate implications, Clim. Past, 13, 1771, 10.5194/cp-13-1771-2017
Voarintsoa, 2017, Multiple proxy analyses of a U/Th-dated stalagmite to reconstruct paleoenvironmental changes in northwestern Madagascar between 370 CE and 1300 CE, Palaeogeogr. Palaeoclimatol. Palaeoecol., 469, 138, 10.1016/j.palaeo.2017.01.003
Voarintsoa, 2019, Investigating the 8.2 ka event in northwestern Madagascar: insight from data–model comparisons, Quat. Sci. Rev., 204, 172, 10.1016/j.quascirev.2018.11.030
Voarintsoa, N.R.G., Ratovonanahary, A.L.J., Rakotovao, Z.M., Bouillon, S., 2020a. Understanding modern kinetic isotope effect in Anjohibe cave, in Northwestern Madagascar: A Key to Calibrate Speleothem δ18O and δ13C (other). display. doi:https://doi.org/10.5194/egusphere-egu2020-4855.
Voarintsoa, 2020, Triple oxygen isotope fractionation between CaCO3 and H2O in inorganically precipitated calcite and aragonite, Chem. Geol., 539, 10.1016/j.chemgeo.2020.119500
Wang, 2019, The African Humid Period, rapid climate change events, the timing of human colonization, and megafaunal extinctions in Madagascar during the Holocene: evidence from a 2m Anjohibe Cave stalagmite, Quat. Sci. Rev., 210, 136, 10.1016/j.quascirev.2019.02.004
Wassenburg, 2020, Calcite Mg and Sr partition coefficients in cave environments: implications for interpreting prior calcite precipitation in speleothems, Geochim. Cosmochim. Acta, 269, 581, 10.1016/j.gca.2019.11.011
Watkins, 2013, The influence of kinetics on the oxygen isotope composition of calcium carbonate, Earth Planet. Sci. Lett., 375, 349, 10.1016/j.epsl.2013.05.054
Watkins, 2014, The influence of temperature, pH, and growth rate on the δ18O composition of inorganically precipitated calcite, Earth Planet. Sci. Lett., 404, 332, 10.1016/j.epsl.2014.07.036
Wong, 2015, Advancements in the use of speleothems as climate archives, Quat. Sci. Rev., 127, 1, 10.1016/j.quascirev.2015.07.019
Zeebe, 2001
Zinke, 2004, ENSO and Indian Ocean subtropical dipole variability is recorded in a coral record off southwest Madagascar for the period 1659 to 1995, Earth Planet. Sci. Lett., 228, 177, 10.1016/j.epsl.2004.09.028