Understanding the interactions between bone mineral crystals and their binding peptides derived from filamentous phage
Tài liệu tham khảo
Helfrich, 2003
Donley, 1998, Noncollagenous matrix proteins controlling mineralization: possible role in pathologic calcification of vascular tissue, Trends Cardiovasc. Med., 8, 199, 10.1016/S1050-1738(98)00014-0
Li, 2012, Flagellar display of bone-protein-derived peptides for studying peptide-mediated biomineralization, Langmuir, 28, 16338, 10.1021/la303237u
Du, 2005, Supramolecular assembly of amelogenin nanospheres into birefringent microribbons, Science, 307, 1450, 10.1126/science.1105675
Mann, 2001, 1
Hing, 2004, Bone repair in the twenty-first century biology, chemistry or engineering?, Phil. Trans. R. Soc. Lond. A, 362, 2821, 10.1098/rsta.2004.1466
Sato, 2004, Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications, Expert Rev. Med. Devices, 1, 105, 10.1586/17434440.1.1.105
Weiner, 1998, The material bone: structure mechanical function relations, Annu. Rev. Mater. Sci., 28, 271, 10.1146/annurev.matsci.28.1.271
Feng, 2020, In situ generation of hydroxyapatite on biopolymer particles for fabrication of bone scaffolds owning bioactivity, ACS Appl. Mater. Interfaces, 12, 46743, 10.1021/acsami.0c13768
Shuai, 2021, Accelerated degradation of hap/plla bone scaffold by PGA blending facilitates bioactivity and osteoconductivity, Bioact. Mater., 6, 490, 10.1016/j.bioactmat.2020.09.001
Shuai, 2022, In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold, J. Adv. Res., 35, 13, 10.1016/j.jare.2021.03.009
Grohe, 2007, Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide, J. Am. Chem. Soc., 129, 14946, 10.1021/ja0745613
He, 2003, Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1, Nat. Mater., 2, 552, 10.1038/nmat945
He, 2004, Dentin matrix protein 1 immobilized on type I collagen fibrils facilitates apatite deposition in vitro, J. Biol. Chem., 279, 11649, 10.1074/jbc.M309296200
Hoang, 2003, Bone recognition mechanism of porcine osteocalcin from crystal structure, Nature, 425, 977, 10.1038/nature02079
Makrodimitris, 2007, Structure prediction of protein-solid surface interactions reveals a molecular recognition motif of statherin for hydroxyapatite, J. Am. Chem. Soc., 129, 13713, 10.1021/ja074602v
Nudelman, 2010, The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors, Nat. Mater., 9, 1004, 10.1038/nmat2875
Wazen, 2007, In vivo functional analysis of polyglutamic acid domains in recombinant bone sialoprotein, J. Histochem. Cytochem., 55, 35, 10.1369/jhc.6A7046.2006
Veis, 2013, Biomineralization mechanisms: a new paradigm for crystal nucleation in organic matrices, Calcif. Tissue Int., 93, 307, 10.1007/s00223-012-9678-2
Colfen, 2010, Biomineralization a crystal-clear view, Nat. Mater., 9, 960, 10.1038/nmat2911
Boskey, 1998, Biomineralization: conflicts, challenges, and opportunities, J. Cell. Biochem., 30/31, 83, 10.1002/(SICI)1097-4644(1998)72:30/31+<83::AID-JCB12>3.0.CO;2-F
Irving, 2001, Random-peptide libraries and anti-fragment libraries for epitope mapping and the development of vaccines and diagnostics, Current Opin. Chem. Bio., 5, 314, 10.1016/S1367-5931(00)00208-8
Cao, 2009, Identification of microtubule-binding domains on microtubule-associated proteins by major coat phage display technique, Biomacromolecules, 10, 555, 10.1021/bm801224q
Xu, 2011, Self-assembly and mineralization of genetically modifiable biological nanofibers driven by beta-structure formation, Biomacromolecules, 12, 2193, 10.1021/bm200274r
Long, 1998, A peptide that inhibits hydroxyapatite growth is in an extended conformation on the crystal surface, Proc. Natl. Acad. Sci. U. S. A., 95, 12083, 10.1073/pnas.95.21.12083
Sundell, 2014, Interaction analysis through proteomic phage display, Biomed Res. Int., 2014, 10.1155/2014/176172
Rodi, 2002, One from column a and two from column B: the benefits of phage display in molecular-recognition studies, Curr. Opin. Chem. Biol., 6, 92, 10.1016/S1367-5931(01)00287-3
Carter, 2006, Phage display reveals multiple contact sites between fhua, an outer membrane receptor of Escherichia coli, and tonb, J. Mol. Biol., 357, 236, 10.1016/j.jmb.2005.12.039
Smith, 1997, Phage display, Chem. Rev., 97, 391, 10.1021/cr960065d
Kehoe, 2005, Filamentous phage display in the new millennium, Chem. Rev., 105, 4056, 10.1021/cr000261r
Li, 2020, Selectively suppressing tumor angiogenesis for targeted breast cancer therapy by genetically engineered phage, Adv. Mater, 32, e2001260, 10.1002/adma.202001260
Yang, 2018, Evolutionary selection of personalized melanoma cell/tissue dual-homing peptides for guiding bionanofibers to malignant tumors, Chem. Commun. (Camb.), 54, 1631, 10.1039/C7CC09077C
Shukla, 2005, Phage display selection for cell-specific ligands: development of a screening procedure suitable for small tumor specimens, J. Drug Target., 13, 7, 10.1080/10611860400020464
Samoylov, 2002, Recognition of cell-specific binding of phage display derived peptides using an acoustic wave sensor, Biomol. Eng., 18, 269, 10.1016/S1389-0344(01)00108-3
Shadidi, 2003, Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells, FASEB J, 17, 256, 10.1096/fj.02-0280fje
Samoylova, 2003, Phage probes for malignant glial cells, Mol. Cancer Ther., 2, 1129
De, 2005, Isolation of a mycoplasma-specific binding peptide from an unbiased phage-displayed peptide library, Mol. BioSyst., 1, 149, 10.1039/b504572j
Li, 2016, Identification of novel short batio3-binding/nucleating peptides for phage-templated in situ synthesis of Batio3 polycrystalline nanowires at room temperature, ACS Appl. Mater. Interfaces, 8, 30714, 10.1021/acsami.6b09708
Mao, 2003, Viral assembly of oriented quantum dot nanowires, Proc. Natl. Acad. Sci. U. S. A., 100, 6946, 10.1073/pnas.0832310100
Mao, 2004, Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires, Science, 303, 213, 10.1126/science.1092740
Wang, 2021, Binding peptide-promoted biofunctionalization of graphene paper with hydroxyapatite for stimulating osteogenic differentiation of mesenchymal stem cells, ACS Appl. Mater. Interfaces, 14, 350, 10.1021/acsami.1c20740
Petrenko, 2003, Phage display for detection of biological threat agents, J. Microbiol. Methods, 53, 253, 10.1016/S0167-7012(03)00029-0
Lee, 2002, Ordering of quantum dots using genetically engineered viruses, Science, 296, 892, 10.1126/science.1068054
Petrenko, 2000, Phages from landscape libraries as substitute antibodies, Protein Eng., Des. Sel., 13, 589, 10.1093/protein/13.8.589
Abbineni, 2010, Evolutionary selection of new breast cancer cell-targeting peptides and phages with the cell-targeting peptides fully displayed on the major coat and their effects on actin dynamics during cell internalization, Mol. Pharm., 7, 1642, 10.1021/mp100052y
Zhou, 2019, Hierarchical ordered assembly of genetically modifiable viruses into nanoridge-in-microridge structures, Adv. Mater., 31, e1905577, 10.1002/adma.201905577
Yue, 2022, T7 phage as an emerging nanobiomaterial with genetically tunable target specificity, Adv. Sci., 9, 10.1002/advs.202103645
Cao, 2019, Bacteriophage-based biomaterials for tissue regeneration, Adv. Drug Deliv. Rev., 145, 73, 10.1016/j.addr.2018.11.004
Chung, 2011, Evolutionary screening of collagen-like peptides that nucleate hydroxyapatite crystals, Langmuir, 27, 7620, 10.1021/la104757g
Gungormus, 2008, Regulation of in vitro calcium phosphate mineralization by combinatorially selected hydroxyapatite-binding peptides, Biomacromolecules, 9, 966, 10.1021/bm701037x
Roy, 2008, Identification of a highly specific hydroxyapatite-binding peptide using phage display, Adv. Mater., 20, 1830, 10.1002/adma.200702322
Segvich, 2009, Identification of peptides with targeted adhesion to bone-like mineral via phage display and computational modeling, Cells Tissues Organs, 189, 245, 10.1159/000151380
Dong, 2018, Difunctional bacteriophage conjugated with photosensitizers for Candida albicans-targeting photodynamic inactivation, Int. J. Nanomedicine, 13, 2199, 10.2147/IJN.S156815
Petrenko, 1996, A library of organic landscapes on filamentous phage, Protein Eng., Des. Sel., 9, 797, 10.1093/protein/9.9.797
Wang, 2006, The structure of a filamentous bacteriophage, J. Mol. Biol., 361, 209, 10.1016/j.jmb.2006.06.027
Petrenko, 2018, Landscape phage: evolution from phage display to nanobiotechnology, Viruses, 10, 311, 10.3390/v10060311
Kuzmicheva, 2008, Diversity and censoring of landscape phage libraries, Protein Eng., Des. Sel., 22, 9, 10.1093/protein/gzn060
Mandava, 2004, Relic - a bioinformatics server for combinatorial peptide analysis and identification of protein-ligand interaction sites, Proteomics, 4, 1439, 10.1002/pmic.200300680
Cao, 2015, "Cleaning’’ the surface of hydroxyapatite nanorods by a reaction-dissolution approach, J. Mater. Chem. B, 3, 7667, 10.1039/C5TB01509J
Mastrogiacomo, 2001, Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells, Osteoarthr. Cartil., 9, S36, 10.1053/joca.2001.0442
Holzer, 2002, Estrogen regulation of growth and alkaline phosphatase expression by cultured human bone marrow stromal cells, J. Orthop. Res., 20, 281, 10.1016/S0736-0266(01)00092-4
Masica, 2009, Solution- and adsorbed-state structural ensembles predicted for the statherin-hydroxyapatite system, Biophys. J., 96, 3082, 10.1016/j.bpj.2009.01.033
Lazaridis, 1999, Effective energy function for proteins in solution, Proteins: Struct., Funct., Bioinf., 35, 133, 10.1002/(SICI)1097-0134(19990501)35:2<133::AID-PROT1>3.0.CO;2-N
Simons, 1997, Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring functions, J. Mol. Biol., 268, 209, 10.1006/jmbi.1997.0959
Rohl, 2004, Protein structure prediction using Rosetta, Methods Enzymol., 383, 66, 10.1016/S0076-6879(04)83004-0
Gray, 2003, Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations, J. Mol. Biol., 331, 281, 10.1016/S0022-2836(03)00670-3
Kortemme, 2003, An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes, J. Mol. Biol., 326, 1239, 10.1016/S0022-2836(03)00021-4
Pearson, 1988, Improved tools for biological sequence comparison, Proc. Natl. Acad. Sci. U. S. A., 85, 2444, 10.1073/pnas.85.8.2444
Altschul, 1990, Basic local alignment Search tool, J. Mol. Biol., 215, 403, 10.1016/S0022-2836(05)80360-2
Stayton, 2003, Molecular recognition at the protein-hydroxyapatite interface, Crit. Rev. Oral Biol. Med., 14, 370, 10.1177/154411130301400507
Fujisawa, 1996, Acidic amino acid-rich sequences as binding sites of osteonectin to hydroxyapatite crystals, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 1292, 53, 10.1016/0167-4838(95)00190-5
Tye, 2003, Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein, J. Biol. Chem., 278, 7949, 10.1074/jbc.M211915200
Yang, 2017, Ice-templated protein nanoridges induce bone tissue formation, Adv. Funct. Mater., 27, 10.1002/adfm.201703726
Chien, 2009, Modulation of calcium oxalate dihydrate growth by selective crystal-face binding of phosphorylated osteopontin and polyaspartate peptide showing occlusion by sectoral (compositional) zoning, J. Biol. Chem., 284, 23491, 10.1074/jbc.M109.021899
Jevtic, 2008, Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation, Cryst. Growth Des., 8, 2217, 10.1021/cg7007304
Wang, 2006, Liquid-solid-solution synthesis of biomedical hydroxyapatite nanorods, Adv. Mater., 18, 2031, 10.1002/adma.200600033
1993
Richardson, 1981, The anatomy and taxonomy of protein structure, Adv. Protein Chem., 34, 167, 10.1016/S0065-3233(08)60520-3
Williamson, 1994, The structure and function of proline-rich regions in proteins, Biochem. J., 297, 249, 10.1042/bj2970249
Burg, 2000, Biomaterial developments for bone tissue engineering, Biomaterials, 21, 2347, 10.1016/S0142-9612(00)00102-2
Huang, 2007, Synthesis and characterization of electroactive and biodegradable aba block copolymer of polylactide and aniline pentamer, Biomaterials, 28, 1741, 10.1016/j.biomaterials.2006.12.007
Liu, 2004, Polymeric scaffolds for bone tissue engineering, Ann. Biomed. Eng., 32, 477, 10.1023/B:ABME.0000017544.36001.8e
Ma, 2008, Biomimetic materials for tissue engineering, Adv. Drug Deliv. Rev., 60, 184, 10.1016/j.addr.2007.08.041
Meinel, 2005, Silk implants for the healing of critical size bone defects, Bone, 37, 688, 10.1016/j.bone.2005.06.010
Rice, 2005, Cell-based therapies and tissue engineering, Otolaryngol. Clin. North Am., 38, 199, 10.1016/j.otc.2004.10.010
Stevens, 2008, A review of materials, fabrication to enhance bone regeneration in methods, and strategies used engineered bone tissues, J. Biomed. Mater. Res. B, 85B, 573, 10.1002/jbm.b.30962
Suchanek, 1996, Processing and mechanical properties of hydroxyapatite reinforced with hydroxyapatite whiskers, Biomaterials, 17, 1715, 10.1016/0142-9612(96)87652-6
Suchanek, 1997, Hydroxyapatite/hydroxyapatite-whisker composites without sintering additives: mechanical properties and microstructural evolution, J. Am. Ceram. Soc., 80, 2805, 10.1111/j.1151-2916.1997.tb03197.x
Cai, 2008, Calcium phosphate nanoparticles in biomineralization and biomaterials, J. Mater. Chem., 18, 3775, 10.1039/b805407j
Mann, 1988, Molecular recognition in biomineralization, Nature, 332, 119, 10.1038/332119a0
Berman, 1995, Total alignment of calcite at acidic polydiacetylene films - cooperativity at the organic-inorganic interface, Science, 269, 515, 10.1126/science.269.5223.515
Traub, 1989, 3-Dimensional ordered distribution of crystals in Turkey tendon collagen-fibers, Proc. Natl. Acad. Sci. U. S. A., 86, 9822, 10.1073/pnas.86.24.9822
Dogic, 2006, Ordered phases of filamentous viruses, Curr. Opin. Colloid Interface Sci., 11, 47, 10.1016/j.cocis.2005.10.004
Krag, 2006, Selection of tumor-binding ligands in cancer patients with phage display libraries, Cancer Res., 66, 8925, 10.1158/0008-5472.CAN-05-4441
Shukla, 2005, Selection of tumor-targeting agents on freshly excised human breast tumors using a phage display library, Oncol. Rep., 13, 757
Stubbs, 1997, Characterization of native and recombinant bone sialoprotein: delineation of the mineral-binding and cell adhesion domains and structural analysis of the rgd domain, J. Bone Miner. Res., 12, 1210, 10.1359/jbmr.1997.12.8.1210
Sawyer, 2005, The effect of the addition of a polyglutamate motif to rgd on peptide tethering to hydroxyapatite and the promotion of mesenchymal stem cell adhesion, Biomaterials, 26, 7046, 10.1016/j.biomaterials.2005.05.006