Understanding the interactions between bone mineral crystals and their binding peptides derived from filamentous phage

Materials Today Advances - Tập 15 - Trang 100263 - 2022
Yan Li1, Binrui Cao2, Sita Modali2, Elizabeth M.Y. Lee3, Hong Xu2, Valery Petrenko4, Jeffrey J. Gray3, Mingying Yang1, Chuanbin Mao2,5
1Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, PR China
2Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
3Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
4Department of Pathobiology, College of Veterinary Medicine, 253 Greene Hall, Auburn University, AL 36849-5519, USA
5School of Materials Science and Engineering, Zhejiang University, 310058, Zhejiang, China

Tài liệu tham khảo

Helfrich, 2003 Donley, 1998, Noncollagenous matrix proteins controlling mineralization: possible role in pathologic calcification of vascular tissue, Trends Cardiovasc. Med., 8, 199, 10.1016/S1050-1738(98)00014-0 Li, 2012, Flagellar display of bone-protein-derived peptides for studying peptide-mediated biomineralization, Langmuir, 28, 16338, 10.1021/la303237u Du, 2005, Supramolecular assembly of amelogenin nanospheres into birefringent microribbons, Science, 307, 1450, 10.1126/science.1105675 Mann, 2001, 1 Hing, 2004, Bone repair in the twenty-first century biology, chemistry or engineering?, Phil. Trans. R. Soc. Lond. A, 362, 2821, 10.1098/rsta.2004.1466 Sato, 2004, Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications, Expert Rev. Med. Devices, 1, 105, 10.1586/17434440.1.1.105 Weiner, 1998, The material bone: structure mechanical function relations, Annu. Rev. Mater. Sci., 28, 271, 10.1146/annurev.matsci.28.1.271 Feng, 2020, In situ generation of hydroxyapatite on biopolymer particles for fabrication of bone scaffolds owning bioactivity, ACS Appl. Mater. Interfaces, 12, 46743, 10.1021/acsami.0c13768 Shuai, 2021, Accelerated degradation of hap/plla bone scaffold by PGA blending facilitates bioactivity and osteoconductivity, Bioact. Mater., 6, 490, 10.1016/j.bioactmat.2020.09.001 Shuai, 2022, In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold, J. Adv. Res., 35, 13, 10.1016/j.jare.2021.03.009 Grohe, 2007, Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide, J. Am. Chem. Soc., 129, 14946, 10.1021/ja0745613 He, 2003, Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1, Nat. Mater., 2, 552, 10.1038/nmat945 He, 2004, Dentin matrix protein 1 immobilized on type I collagen fibrils facilitates apatite deposition in vitro, J. Biol. Chem., 279, 11649, 10.1074/jbc.M309296200 Hoang, 2003, Bone recognition mechanism of porcine osteocalcin from crystal structure, Nature, 425, 977, 10.1038/nature02079 Makrodimitris, 2007, Structure prediction of protein-solid surface interactions reveals a molecular recognition motif of statherin for hydroxyapatite, J. Am. Chem. Soc., 129, 13713, 10.1021/ja074602v Nudelman, 2010, The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors, Nat. Mater., 9, 1004, 10.1038/nmat2875 Wazen, 2007, In vivo functional analysis of polyglutamic acid domains in recombinant bone sialoprotein, J. Histochem. Cytochem., 55, 35, 10.1369/jhc.6A7046.2006 Veis, 2013, Biomineralization mechanisms: a new paradigm for crystal nucleation in organic matrices, Calcif. Tissue Int., 93, 307, 10.1007/s00223-012-9678-2 Colfen, 2010, Biomineralization a crystal-clear view, Nat. Mater., 9, 960, 10.1038/nmat2911 Boskey, 1998, Biomineralization: conflicts, challenges, and opportunities, J. Cell. Biochem., 30/31, 83, 10.1002/(SICI)1097-4644(1998)72:30/31+<83::AID-JCB12>3.0.CO;2-F Irving, 2001, Random-peptide libraries and anti-fragment libraries for epitope mapping and the development of vaccines and diagnostics, Current Opin. Chem. Bio., 5, 314, 10.1016/S1367-5931(00)00208-8 Cao, 2009, Identification of microtubule-binding domains on microtubule-associated proteins by major coat phage display technique, Biomacromolecules, 10, 555, 10.1021/bm801224q Xu, 2011, Self-assembly and mineralization of genetically modifiable biological nanofibers driven by beta-structure formation, Biomacromolecules, 12, 2193, 10.1021/bm200274r Long, 1998, A peptide that inhibits hydroxyapatite growth is in an extended conformation on the crystal surface, Proc. Natl. Acad. Sci. U. S. A., 95, 12083, 10.1073/pnas.95.21.12083 Sundell, 2014, Interaction analysis through proteomic phage display, Biomed Res. Int., 2014, 10.1155/2014/176172 Rodi, 2002, One from column a and two from column B: the benefits of phage display in molecular-recognition studies, Curr. Opin. Chem. Biol., 6, 92, 10.1016/S1367-5931(01)00287-3 Carter, 2006, Phage display reveals multiple contact sites between fhua, an outer membrane receptor of Escherichia coli, and tonb, J. Mol. Biol., 357, 236, 10.1016/j.jmb.2005.12.039 Smith, 1997, Phage display, Chem. Rev., 97, 391, 10.1021/cr960065d Kehoe, 2005, Filamentous phage display in the new millennium, Chem. Rev., 105, 4056, 10.1021/cr000261r Li, 2020, Selectively suppressing tumor angiogenesis for targeted breast cancer therapy by genetically engineered phage, Adv. Mater, 32, e2001260, 10.1002/adma.202001260 Yang, 2018, Evolutionary selection of personalized melanoma cell/tissue dual-homing peptides for guiding bionanofibers to malignant tumors, Chem. Commun. (Camb.), 54, 1631, 10.1039/C7CC09077C Shukla, 2005, Phage display selection for cell-specific ligands: development of a screening procedure suitable for small tumor specimens, J. Drug Target., 13, 7, 10.1080/10611860400020464 Samoylov, 2002, Recognition of cell-specific binding of phage display derived peptides using an acoustic wave sensor, Biomol. Eng., 18, 269, 10.1016/S1389-0344(01)00108-3 Shadidi, 2003, Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells, FASEB J, 17, 256, 10.1096/fj.02-0280fje Samoylova, 2003, Phage probes for malignant glial cells, Mol. Cancer Ther., 2, 1129 De, 2005, Isolation of a mycoplasma-specific binding peptide from an unbiased phage-displayed peptide library, Mol. BioSyst., 1, 149, 10.1039/b504572j Li, 2016, Identification of novel short batio3-binding/nucleating peptides for phage-templated in situ synthesis of Batio3 polycrystalline nanowires at room temperature, ACS Appl. Mater. Interfaces, 8, 30714, 10.1021/acsami.6b09708 Mao, 2003, Viral assembly of oriented quantum dot nanowires, Proc. Natl. Acad. Sci. U. S. A., 100, 6946, 10.1073/pnas.0832310100 Mao, 2004, Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires, Science, 303, 213, 10.1126/science.1092740 Wang, 2021, Binding peptide-promoted biofunctionalization of graphene paper with hydroxyapatite for stimulating osteogenic differentiation of mesenchymal stem cells, ACS Appl. Mater. Interfaces, 14, 350, 10.1021/acsami.1c20740 Petrenko, 2003, Phage display for detection of biological threat agents, J. Microbiol. Methods, 53, 253, 10.1016/S0167-7012(03)00029-0 Lee, 2002, Ordering of quantum dots using genetically engineered viruses, Science, 296, 892, 10.1126/science.1068054 Petrenko, 2000, Phages from landscape libraries as substitute antibodies, Protein Eng., Des. Sel., 13, 589, 10.1093/protein/13.8.589 Abbineni, 2010, Evolutionary selection of new breast cancer cell-targeting peptides and phages with the cell-targeting peptides fully displayed on the major coat and their effects on actin dynamics during cell internalization, Mol. Pharm., 7, 1642, 10.1021/mp100052y Zhou, 2019, Hierarchical ordered assembly of genetically modifiable viruses into nanoridge-in-microridge structures, Adv. Mater., 31, e1905577, 10.1002/adma.201905577 Yue, 2022, T7 phage as an emerging nanobiomaterial with genetically tunable target specificity, Adv. Sci., 9, 10.1002/advs.202103645 Cao, 2019, Bacteriophage-based biomaterials for tissue regeneration, Adv. Drug Deliv. Rev., 145, 73, 10.1016/j.addr.2018.11.004 Chung, 2011, Evolutionary screening of collagen-like peptides that nucleate hydroxyapatite crystals, Langmuir, 27, 7620, 10.1021/la104757g Gungormus, 2008, Regulation of in vitro calcium phosphate mineralization by combinatorially selected hydroxyapatite-binding peptides, Biomacromolecules, 9, 966, 10.1021/bm701037x Roy, 2008, Identification of a highly specific hydroxyapatite-binding peptide using phage display, Adv. Mater., 20, 1830, 10.1002/adma.200702322 Segvich, 2009, Identification of peptides with targeted adhesion to bone-like mineral via phage display and computational modeling, Cells Tissues Organs, 189, 245, 10.1159/000151380 Dong, 2018, Difunctional bacteriophage conjugated with photosensitizers for Candida albicans-targeting photodynamic inactivation, Int. J. Nanomedicine, 13, 2199, 10.2147/IJN.S156815 Petrenko, 1996, A library of organic landscapes on filamentous phage, Protein Eng., Des. Sel., 9, 797, 10.1093/protein/9.9.797 Wang, 2006, The structure of a filamentous bacteriophage, J. Mol. Biol., 361, 209, 10.1016/j.jmb.2006.06.027 Petrenko, 2018, Landscape phage: evolution from phage display to nanobiotechnology, Viruses, 10, 311, 10.3390/v10060311 Kuzmicheva, 2008, Diversity and censoring of landscape phage libraries, Protein Eng., Des. Sel., 22, 9, 10.1093/protein/gzn060 Mandava, 2004, Relic - a bioinformatics server for combinatorial peptide analysis and identification of protein-ligand interaction sites, Proteomics, 4, 1439, 10.1002/pmic.200300680 Cao, 2015, "Cleaning’’ the surface of hydroxyapatite nanorods by a reaction-dissolution approach, J. Mater. Chem. B, 3, 7667, 10.1039/C5TB01509J Mastrogiacomo, 2001, Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells, Osteoarthr. Cartil., 9, S36, 10.1053/joca.2001.0442 Holzer, 2002, Estrogen regulation of growth and alkaline phosphatase expression by cultured human bone marrow stromal cells, J. Orthop. Res., 20, 281, 10.1016/S0736-0266(01)00092-4 Masica, 2009, Solution- and adsorbed-state structural ensembles predicted for the statherin-hydroxyapatite system, Biophys. J., 96, 3082, 10.1016/j.bpj.2009.01.033 Lazaridis, 1999, Effective energy function for proteins in solution, Proteins: Struct., Funct., Bioinf., 35, 133, 10.1002/(SICI)1097-0134(19990501)35:2<133::AID-PROT1>3.0.CO;2-N Simons, 1997, Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring functions, J. Mol. Biol., 268, 209, 10.1006/jmbi.1997.0959 Rohl, 2004, Protein structure prediction using Rosetta, Methods Enzymol., 383, 66, 10.1016/S0076-6879(04)83004-0 Gray, 2003, Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations, J. Mol. Biol., 331, 281, 10.1016/S0022-2836(03)00670-3 Kortemme, 2003, An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes, J. Mol. Biol., 326, 1239, 10.1016/S0022-2836(03)00021-4 Pearson, 1988, Improved tools for biological sequence comparison, Proc. Natl. Acad. Sci. U. S. A., 85, 2444, 10.1073/pnas.85.8.2444 Altschul, 1990, Basic local alignment Search tool, J. Mol. Biol., 215, 403, 10.1016/S0022-2836(05)80360-2 Stayton, 2003, Molecular recognition at the protein-hydroxyapatite interface, Crit. Rev. Oral Biol. Med., 14, 370, 10.1177/154411130301400507 Fujisawa, 1996, Acidic amino acid-rich sequences as binding sites of osteonectin to hydroxyapatite crystals, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 1292, 53, 10.1016/0167-4838(95)00190-5 Tye, 2003, Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein, J. Biol. Chem., 278, 7949, 10.1074/jbc.M211915200 Yang, 2017, Ice-templated protein nanoridges induce bone tissue formation, Adv. Funct. Mater., 27, 10.1002/adfm.201703726 Chien, 2009, Modulation of calcium oxalate dihydrate growth by selective crystal-face binding of phosphorylated osteopontin and polyaspartate peptide showing occlusion by sectoral (compositional) zoning, J. Biol. Chem., 284, 23491, 10.1074/jbc.M109.021899 Jevtic, 2008, Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation, Cryst. Growth Des., 8, 2217, 10.1021/cg7007304 Wang, 2006, Liquid-solid-solution synthesis of biomedical hydroxyapatite nanorods, Adv. Mater., 18, 2031, 10.1002/adma.200600033 1993 Richardson, 1981, The anatomy and taxonomy of protein structure, Adv. Protein Chem., 34, 167, 10.1016/S0065-3233(08)60520-3 Williamson, 1994, The structure and function of proline-rich regions in proteins, Biochem. J., 297, 249, 10.1042/bj2970249 Burg, 2000, Biomaterial developments for bone tissue engineering, Biomaterials, 21, 2347, 10.1016/S0142-9612(00)00102-2 Huang, 2007, Synthesis and characterization of electroactive and biodegradable aba block copolymer of polylactide and aniline pentamer, Biomaterials, 28, 1741, 10.1016/j.biomaterials.2006.12.007 Liu, 2004, Polymeric scaffolds for bone tissue engineering, Ann. Biomed. Eng., 32, 477, 10.1023/B:ABME.0000017544.36001.8e Ma, 2008, Biomimetic materials for tissue engineering, Adv. Drug Deliv. Rev., 60, 184, 10.1016/j.addr.2007.08.041 Meinel, 2005, Silk implants for the healing of critical size bone defects, Bone, 37, 688, 10.1016/j.bone.2005.06.010 Rice, 2005, Cell-based therapies and tissue engineering, Otolaryngol. Clin. North Am., 38, 199, 10.1016/j.otc.2004.10.010 Stevens, 2008, A review of materials, fabrication to enhance bone regeneration in methods, and strategies used engineered bone tissues, J. Biomed. Mater. Res. B, 85B, 573, 10.1002/jbm.b.30962 Suchanek, 1996, Processing and mechanical properties of hydroxyapatite reinforced with hydroxyapatite whiskers, Biomaterials, 17, 1715, 10.1016/0142-9612(96)87652-6 Suchanek, 1997, Hydroxyapatite/hydroxyapatite-whisker composites without sintering additives: mechanical properties and microstructural evolution, J. Am. Ceram. Soc., 80, 2805, 10.1111/j.1151-2916.1997.tb03197.x Cai, 2008, Calcium phosphate nanoparticles in biomineralization and biomaterials, J. Mater. Chem., 18, 3775, 10.1039/b805407j Mann, 1988, Molecular recognition in biomineralization, Nature, 332, 119, 10.1038/332119a0 Berman, 1995, Total alignment of calcite at acidic polydiacetylene films - cooperativity at the organic-inorganic interface, Science, 269, 515, 10.1126/science.269.5223.515 Traub, 1989, 3-Dimensional ordered distribution of crystals in Turkey tendon collagen-fibers, Proc. Natl. Acad. Sci. U. S. A., 86, 9822, 10.1073/pnas.86.24.9822 Dogic, 2006, Ordered phases of filamentous viruses, Curr. Opin. Colloid Interface Sci., 11, 47, 10.1016/j.cocis.2005.10.004 Krag, 2006, Selection of tumor-binding ligands in cancer patients with phage display libraries, Cancer Res., 66, 8925, 10.1158/0008-5472.CAN-05-4441 Shukla, 2005, Selection of tumor-targeting agents on freshly excised human breast tumors using a phage display library, Oncol. Rep., 13, 757 Stubbs, 1997, Characterization of native and recombinant bone sialoprotein: delineation of the mineral-binding and cell adhesion domains and structural analysis of the rgd domain, J. Bone Miner. Res., 12, 1210, 10.1359/jbmr.1997.12.8.1210 Sawyer, 2005, The effect of the addition of a polyglutamate motif to rgd on peptide tethering to hydroxyapatite and the promotion of mesenchymal stem cell adhesion, Biomaterials, 26, 7046, 10.1016/j.biomaterials.2005.05.006