Understanding the implication of Kawakita model parameters using in-die force-displacement curve analysis for compacted and non-compacted API powders
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abu Fara D, Al-Hmoud L, Rashid I, Chowdhry BZ, Badwan A (2020) Understanding the performance of a novel direct compression excipient comprising roller compacted chitin. Drugs 18(2):115
Alakayleh F, Rashid I, Al-Omari MMH, Al-Sou'od K, Chowdhry BZ, Badwan AA (2016) Compression profiles of different molecular weight chitosans. Powder Technol 299:107–118
Al-Asady RB, Osborne JD, Hounslow MJ, Salman AD (2015) Roller compactor: the effect of mechanical properties of primary particles. Int J Pharm 496:124–136
Almaya A, Aburub A (2008) Effect of particle size on compaction of materials with different deformation mechanisms with and without lubricants. AAPS PharmSciTech 9:414–418
Antikainen O, Yliruusi J (2003) Determining the compression behaviour of pharmaceutical powders from the force–distance compression profile. Int J Pharm 252:253–261
Azad MA, Capellades G, Wang AB, Klee DM, Hammersmith G, Rapp K, Brancazio D, Myerson AS (2021b) Impact of critical material attributes (CMAs)-particle shape on miniature pharmaceutical unit operations. AAPS PharmSciTech 22(3):98
Azad MA, Capellades G, Wang AB et al (2021a) Impact of critical material attributes (CMAs)-particle shape on miniature pharmaceutical unit operations. AAPS PharmSciTech 98:22
Bawuah P, Markl D, Farrell D et al (2020) Terahertz-based porosity measurement of pharmaceutical tablets: a tutorial. J Infrared Milli Terahz Waves 41:450–469
Busignies V, Leclerc B, Porion P, Evesque P, Couarraze G, Tchoreloff P (2006) Compaction behaviour and new predictive approach to the compressibility of binary mixtures of pharmaceutical excipients. Eur J Pharm Biopharm 64:66–74
Casian T, Iurian S, Gâvan A, Porfire A, Pop AL, Crișan S, Pușcaș AM, Tomuță I (2022) In-depth understanding of granule compression behavior under variable raw material and processing conditsions. Pharmaceutics 14:177
Chung YC, Lin CK, Chou PH, Hsiau SS (2016) Mechanical behaviour of a granular solid and its contacting deformable structure under uni-axial compression – Part I: Joint DEM–FEM modelling and experimental validation. Chem Eng Sci 144:404–420
Dwivedi SK, Oates RJ, Mitchell AG (1991) Estimation of elastic recovery, work of decompression and Young’s modulus using a rotary tablet press. J Pharm Pharmacol 44:459–466
Freeman T, Bey HV, Hanish M, Brockbank K, Armstrong B (2016) The influence of roller compaction processing variables on the rheological properties of granules. Asian J Pharm Sci 11:516–527
Gharaibeh SF, Aburub A (2013) Use of first derivative of displacement vs. force profiles to determine deformation behavior of compressed powders. AAPS PharmSciTech 14(1):398–401
Heckel RW (1961) An analysis of powder compaction phenomena. Trans Metall Soc AIME 221:1001–1008
Ilkka J, Paronen P (1993) Prediction of the compression behavior of powder mixtures by the Heckel equation. Int J Pharm 94:181–187
Jonsson H, Gråsjö J, Frenning G (2017) Mechanical behaviour of ideal elastic-plastic particles subjected to different triaxial loading conditions. Powder Technol 315:347–355
Kazemi P, Khalid MH, Gago AP, Kleinebudde P, Jachowicz R, Szlęk J, Mendyk A (2017) Effect of roll compaction on granule size distribution of microcrystalline cellulose–mannitol mixtures: computational intelligence modeling and parametric analysis. Drug Des Devel Ther 11:241–251
Krycer I, Pope DG, Hersey JA (1982) An evaluation of the techniques employed to investigate powder compaction behaviour. Int J Pharm 12:113–134
Lin CW, Cham TM (1995) Compression behavior and tensile strength of heat-treated polyethylene glycols. Int J Pharm 118:169–179
Mady OY, Al-Shoubki AA, Donia AA (2021 Nov 2) An industrial procedure for pharmacodynamic improvement of metformin HCl via granulation with its paracellular pathway enhancer using factorial experimental design. Drug Des Devel Ther 15:4469–4487
Nordström J, Klevan I, Alderborn G (2009) A particle rearrangement index based on the Kawakita powder compression equation. J Pharm Sci 98:1053–1063
Nordstrom J, Klevan I, Alderborn GA (2009) Particle rearrangement index based on the Kawakita powder compression equation. J Pharm Sci 98:1053–1063
Nordström J, Welch K, Frenning G, Alderborn G (2008) On the physical interpretation of the Kawakita and Adams parameters derived from confined compression of granular solids. Powder Technol 182:424–435
Oates RJ, Mitchell AG (1989) Calculation of punch displacement and work of powder compaction on a rotary tablet press. J Pharm Pharmacol 41:517–523
Odunayo AB, Kayode FI, Benjamin AA, Adekola AI, Ruth OO (2021) Evaluation of the binding property of some binders in metronidazole tablet formulation. Int J Pharmacy Chem 7(2):22–30
Pasha M, Dogbe S, Hare C, Hassanpour A, Ghadiri M (2013) A new contact model for modelling of elastic-plastic-adhesive spheres in distinct element method. Proc AIP 1542:831
Patel S, Kaushal AM, Bansal AK (2006) Compression physics in the formulation development of tablets. Crit Rev Ther Drug 23(1):1–65
Pawar P, Joo H, Callegari G, Drazer G, Cuitino AM, Muzzi FJ (2016) The effect of mechanical strain on properties of lubricated tablets compacted at different pressures. Powder Technol 301:657–664
Rashid I, Daraghmeh N, Al-Remawi M, Leharne SA, Chowdhry BZ, Badwan A (2010) Characterization of the impact of magnesium stearate lubrication on the tableting properties of chitin-Mg silicate as a superdisintegrating binder when compared to Avicel® 200. Powder Technol 203:609–619
Rathbone D, Marigo M, Dini D, Wachem BV (2015) An accurate force–displacement law for the modelling of elastic–plastic contacts in discrete element simulations. Powder Technol 282:2–9
Raval MK, Sorathiya KR, Chauhan NP, Patel JM, Parikh RK, Sheth NR (2013) Influence of polymers/excipients on development of agglomerated crystals of secnidazole by crystallo-co-agglomeration technique to improve processability. Drug Dev Ind Pharm 39(3):437–446
Rojas J, Hernandez S (2014) Effect of the compaction platform on the densification parameters of tableting excipients with different deformation mechanisms. Chem Pharm Bull 62(3):281–287
Roopwani R, Buckner RS (2011) Understanding deformation mechanisms during powder compaction using principal component analysis of compression data. Int J Pharm 418:227–234
Russell A, Müller P, Tomas J (2014) Quasi-static diametrical compression of characteristic elastic–plastic granules: energetic aspects at contact. Chem Eng Sci 114:70–84
Sharaf MA, Khalafallah NM, El Gholmy ZA, Nada A (2006) Effect of raw materials on the formulation of norfloxacin tablets. Pharm Technol Eur 18(2). https://www.pharmtech.com.
Shivanand P, Sprockel OL (1992) Compaction behavior of cellulose polymers. Powder Technol 69:177–184
Siddiqui S, Naqvi GR, Ali H, Zafar F, Siddiqui S, Nawab A, Siddiqui T (2021) Formulation development of directly compressible mebevarine tablets using superdisintegrant: a way to investigate quality atributes, in vitro release kinetics and stability profile. Pak J Pharm Sci 34(3):915–924 PMID: 34602414
Tomas J (2004) Product design of cohesive powders - mechanical properties, compression and flow behavior. Chem Eng Technol 27:No. 6
