Understanding the human brain: insights from comparative biology
Tài liệu tham khảo
Herculano-Houzel, 2011, Gorilla and orangutan brains conform to the primate cellular scaling rules: implications for human evolution, Brain Behav. Evol., 77, 33, 10.1159/000322729
Darwin, 1859
Owen, 2009, Hippocampus minor, calcar avis, and the Huxley-Owen debate, Neurosurgery, 65, 1098, 10.1227/01.NEU.0000359535.84445.0B
Barton, 2019, Proportional versus relative size as metrics in human brain evolution, Proc. Natl. Acad. Sci. U. S. A., 116, 3, 10.1073/pnas.1817200116
Boddy, 2017, Evidence of a conserved molecular response to selection for increased brain size in primates, Genome Biol. Evol., 9, 700, 10.1093/gbe/evx028
Aristide, 2016, Brain shape convergence in the adaptive radiation of New World monkeys, Proc. Natl. Acad. Sci. U. S. A., 113, 2158, 10.1073/pnas.1514473113
Dunbar, 1998, The social brain hypothesis, Evol. Anthropol. Issues News Rev., 6, 178, 10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-8
Clutton-Brock, 1980, Primates, brains and ecology, J. Zool., 190, 309, 10.1111/j.1469-7998.1980.tb01430.x
Shultz, 2007, The evolution of the social brain: anthropoid primates contrast with other vertebrates, Proc. R. Soc. B Biol. Sci., 274, 2429, 10.1098/rspb.2007.0693
Schillaci, 2006, Sexual selection and the evolution of brain size in primates, PLoS One, 1, 10.1371/journal.pone.0000062
Schillaci, 2008, Primate mating systems and the evolution of neocortex size, J. Mammal., 89, 58, 10.1644/06-MAMM-A-417.1
Dunbar, 2007, Understanding primate brain evolution, Philos. Trans. R. Soc. B Biol. Sci., 362, 649, 10.1098/rstb.2006.2001
MacLean, 2009, Sociality, ecology, and relative brain size in lemurs, J. Hum. Evol., 56, 471, 10.1016/j.jhevol.2008.12.005
Barton, 1996, Neocortex size and behavioural ecology in primates, Proc. R. Soc. Lond. B Biol. Sci., 263, 173, 10.1098/rspb.1996.0028
DeCasien, 2017, Primate brain size is predicted by diet but not sociality, Nat. Ecol. Evol., 1, 0112, 10.1038/s41559-017-0112
Powell, 2017, Re-evaluating the link between brain size and behavioural ecology in primates, Proc. R. Soc. B Biol. Sci., 284
Schuppli, 2016, Life history, cognition and the evolution of complex foraging niches, J. Hum. Evol., 92, 91, 10.1016/j.jhevol.2015.11.007
DeCasien, 2019, Primate mosaic brain evolution reflects selection on sensory and cognitive specialization, Nat. Ecol. Evol., 3, 1483, 10.1038/s41559-019-0969-0
Heldstab, 2016, Manipulation complexity in primates coevolved with brain size and terrestriality, Sci. Rep., 6, 24528, 10.1038/srep24528
Navarrete, 2016, The coevolution of innovation and technical intelligence in primates, Philos. Trans. R. Soc. B Biol. Sci., 371, 10.1098/rstb.2015.0186
González-Forero, 2018, Inference of ecological and social drivers of human brain-size evolution, Nature, 557, 554, 10.1038/s41586-018-0127-x
Barton, 1998, Visual specialization and brain evolution in primates, Proc. R. Soc. Lond. B Biol. Sci., 265, 1933, 10.1098/rspb.1998.0523
Fernandez, 2007, Sexual selection and trichromatic color vision in primates: statistical support for the preexisting-bias hypothesis, Am. Nat., 170, 10, 10.1086/518566
Rosati, 2017, Foraging cognition: reviving the ecological intelligence hypothesis, Trends Cogn. Sci., 21, 691, 10.1016/j.tics.2017.05.011
Kraft, 2021, The energetics of uniquely human subsistence strategies, Science, 374, 10.1126/science.abf0130
Preuss, 2002, Human-specific organization of primary visual cortex: alternating compartments of dense Cat-301 and calbindin immunoreactivity in layer 4A, Cereb. Cortex, 12, 671, 10.1093/cercor/12.7.671
Bryant, 2012, Evidence for ape and human specializations in geniculostriate projections from VGLUT2 immunohistochemistry, Brain Behav. Evol., 80, 210, 10.1159/000341135
Barrett, 2022, Experts in action: why we need an embodied social brain hypothesis, Philos. Trans. R. Soc. B Biol. Sci., 377, 10.1098/rstb.2020.0533
Fonseca-Azevedo, 2012, Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution, Proc. Natl. Acad. Sci. U. S. A., 109, 18571, 10.1073/pnas.1206390109
Isler, 2009, The expensive brain: a framework for explaining evolutionary changes in brain size, J. Hum. Evol., 57, 392, 10.1016/j.jhevol.2009.04.009
Sterck, 1997, The evolution of female social relationships in nonhuman primates, Behav. Ecol. Sociobiol., 41, 291, 10.1007/s002650050390
Janmaat, 2021, Using natural travel paths to infer and compare primate cognition in the wild, iScience, 24, 10.1016/j.isci.2021.102343
Castiglione, 2021, The influence of domestication, insularity and sociality on the tempo and mode of brain size evolution in mammals, Biol. J. Linn. Soc., 132, 221, 10.1093/biolinnean/blaa186
Logan, 2018, Beyond brain size: uncovering the neural correlates of behavioral and cognitive specialization, Comp. Cogn. Behav. Rev., 13, 55, 10.3819/CCBR.2018.130008
Diniz-Filho, 2019, Multiple components of phylogenetic non-stationarity in the evolution of brain size in fossil hominins, Evol. Biol., 46, 47, 10.1007/s11692-019-09471-z
Miller, 2019, Quantitative uniqueness of human brain evolution revealed through phylogenetic comparative analysis, eLife, 8, 10.7554/eLife.41250
Melchionna, 2019, Macroevolutionary trends of brain mass in Primates, Biol. J. Linn. Soc., 129, 14
Pagel, 2002, Modelling the evolution of continuously varying characters on phylogenetic trees, 269
Smaers, 2021, The evolution of mammalian brain size, Sci. Adv., 7, 10.1126/sciadv.abe2101
Grabowski, 2016, Bigger brains led to bigger bodies?: the correlated evolution of human brain and body size, Curr. Anthropol., 57, 174, 10.1086/685655
MacLean, 2014, The evolution of self-control, Proc. Natl. Acad. Sci. U. S. A., 111, E2140, 10.1073/pnas.1323533111
Deaner, 2007, Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates, Brain Behav. Evol., 70, 115, 10.1159/000102973
Street, 2017, Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates, Proc. Natl. Acad. Sci. U. S. A., 114, 7908, 10.1073/pnas.1620734114
Herculano-Houzel, 2017, Numbers of neurons as biological correlates of cognitive capability, Curr. Opin. Behav. Sci., 16, 1, 10.1016/j.cobeha.2017.02.004
Burkart, 2017, The evolution of general intelligence, Behav. Brain Sci., 40
Fernandes, 2020, Macroevolutionary patterns and selection modes for general intelligence (G) and for commonly used neuroanatomical volume measures in primates, Intelligence, 80, 10.1016/j.intell.2020.101456
Poirier, 2020, How general is cognitive ability in non-human animals? A meta-analytical and multi-level reanalysis approach, Proc. R. Soc. B Biol. Sci., 287
Shuker, 2017, General intelligence does not help us understand cognitive evolution, Behav. Brain Sci., 40, 10.1017/S0140525X16001771
Ramus, 2017, General intelligence is an emerging property, not an evolutionary puzzle, Behav. Brain Sci., 40, 10.1017/S0140525X1600176X
Barton, 2000, Mosaic evolution of brain structure in mammals, Nature, 405, 1055, 10.1038/35016580
Vanier, 2019, Distinct patterns of hippocampal and neocortical evolution in primates, Brain Behav. Evol., 93, 171, 10.1159/000500625
Preuss, 2007, Evolutionary specializations of primate brain systems, 625
Heritage, 2014, Modeling olfactory bulb evolution through primate phylogeny, PLoS One, 9, 10.1371/journal.pone.0113904
Barton, 2006, Olfactory evolution and behavioral ecology in primates, Am. J. Primatol., 68, 545, 10.1002/ajp.20251
Cerrito, 2021, The expression of care: alloparental care frequency predicts neural control of facial muscles in primates, Evolution, 75, 1727, 10.1111/evo.14275
Rosati, 2014, The ecology of spatial memory in four lemur species, Anim. Cogn., 17, 947, 10.1007/s10071-014-0727-2
Rosati, 2012, Chimpanzees and bonobos exhibit divergent spatial memory development: spatial memory development in chimpanzees and bonobos, Dev. Sci., 15, 840, 10.1111/j.1467-7687.2012.01182.x
Schilder, 2019, Evolutionary shifts dramatically reorganized the human hippocampal complex, J. Comp. Neurol., 528, 3143, 10.1002/cne.24822
Todorov, 2019, Primate hippocampus size and organization are predicted by sociality but not diet, Proc. R. Soc. B, 286, 10.1098/rspb.2019.1712
Pereira-Pedro, 2020, A morphometric comparison of the parietal lobe in modern humans and Neanderthals, J. Hum. Evol., 142, 10.1016/j.jhevol.2020.102770
Gunz, 2019, Neanderthal introgression sheds light on modern human endocranial globularity, Curr. Biol., 29, 120, 10.1016/j.cub.2018.10.065
Neubauer, 2018, Endocasts and the evo-devo approach to study human brain evolution, 173
Hublin, 2017, New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens, Nature, 546, 289, 10.1038/nature22336
Neubauer, 2018, The evolution of modern human brain shape, Sci. Adv., 4, 10.1126/sciadv.aao5961
Smaers, 2019, Brain size expansion in primates and humans is explained by a selective modular expansion of the cortico-cerebellar system, Cortex, 118, 292, 10.1016/j.cortex.2019.04.023
Barton, 2012, Embodied cognitive evolution and the cerebellum, Philos. Trans. R. Soc. B Biol. Sci., 367, 2097, 10.1098/rstb.2012.0112
Herculano-Houzel, 2010, Coordinated scaling of cortical and cerebellar numbers of neurons, Front. Neuroanat., 4, 12
MacLeod, 2003, Expansion of the neocerebellum in Hominoidea, J. Hum. Evol., 44, 401, 10.1016/S0047-2484(03)00028-9
Barton, 2014, Rapid evolution of the cerebellum in humans and other great apes, Curr. Biol., 24, 2440, 10.1016/j.cub.2014.08.056
Smaers, 2018, A cerebellar substrate for cognition evolved multiple times independently in mammals, eLife, 7, 10.7554/eLife.35696
Harrison, 2017, Genetics of cerebellar and neocortical expansion in anthropoid primates: a comparative approach, Brain Behav. Evol., 89, 274, 10.1159/000477432
Schmidt-Nielsen, 1984
Passingham, 2014, Is the prefrontal cortex especially enlarged in the human brain? Allometric relations and remapping factors, Brain Behav. Evol., 84, 156, 10.1159/000365183
Smaers, 2017, Exceptional evolutionary expansion of prefrontal cortex in great apes and humans, Curr. Biol., 27, 714, 10.1016/j.cub.2017.01.020
Donahue, 2018, Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates, Proc. Natl. Acad. Sci. U. S. A., 115, E5183, 10.1073/pnas.1721653115
Barton, 2013, Reply to Smaers: getting human frontal lobes in proportion, Proc. Natl. Acad. Sci. U. S. A., 110, E3683, 10.1073/pnas.1310334110
Gabi, 2016, No relative expansion of the number of prefrontal neurons in primate and human evolution, Proc. Natl. Acad. Sci. U. S. A., 113, 9617, 10.1073/pnas.1610178113
Finlay, 1995, Linked regularities in the development and evolution of mammalian brains, Science, 268, 1578, 10.1126/science.7777856
Montgomery, 2016, Brain evolution and development: adaptation, allometry and constraint, Proc. R. Soc. B Biol. Sci., 283
Montgomery, 2013, The human frontal lobes: not relatively large but still disproportionately important? A commentary on Barton and Venditti, Brain Behav. Evol., 82, 147, 10.1159/000354157
Avin, 2021, An agent-based model clarifies the importance of functional and developmental integration in shaping brain evolution, Evol. Biol., 19, 97
Moore, 2017, Concerted and mosaic evolution of functional modules in songbird brains, Proc. R. Soc. B Biol. Sci., 284
Hoops, 2017, Evidence for concerted and mosaic brain evolution in dragon lizards, Brain Behav. Evol., 90, 211, 10.1159/000478738
Sukhum, 2018, Extreme enlargement of the cerebellum in a clade of teleost fishes that evolved a novel active sensory system, Curr. Biol., 28, 3857, 10.1016/j.cub.2018.10.038
Smaers, 2013, Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution, Proc. R. Soc. B Biol. Sci., 280
Fong, 2021, Rapid mosaic brain evolution under artificial selection for relative telencephalon size in the guppy (Poecilia reticulata), Sci. Adv., 7, 10.1126/sciadv.abj4314
Henriksen, 2016, The domesticated brain: genetics of brain mass and brain structure in an avian species, Sci. Rep., 6, 34031, 10.1038/srep34031
Li, 2017, Detecting the QTL-allele system conferring flowering date in a nested association mapping population of soybean using a novel procedure, Theor. Appl. Genet., 130, 2297, 10.1007/s00122-017-2960-y
Noreikiene, 2015, Quantitative genetic analysis of brain size variation in sticklebacks: support for the mosaic model of brain evolution, Proc. R. Soc. B Biol. Sci., 282
Hibar, 2015, Common genetic variants influence human subcortical brain structures, Nature, 520, 224, 10.1038/nature14101
Rentería, 2014, Genetic architecture of subcortical brain regions: common and region-specific genetic contributions, Genes Brain Behav., 13, 821, 10.1111/gbb.12177
Wen, 2016, Distinct genetic influences on cortical and subcortical brain structures, Sci. Rep., 6, 32760, 10.1038/srep32760
Rimol, 2010, Cortical thickness is influenced by regionally specific genetic factors, Biol. Psychiatry, 67, 493, 10.1016/j.biopsych.2009.09.032
Charvet, 2011, Evo-devo and brain scaling: candidate developmental mechanisms for variation and constancy in vertebrate brain evolution, Brain Behav. Evol., 78, 248, 10.1159/000329851
Pipes, 2013, The non-human primate reference transcriptome resource (NHPRTR) for comparative functional genomics, Nucleic Acids Res., 41, D906, 10.1093/nar/gks1268
Navarrete, 2018, Primate brain anatomy: new volumetric MRI measurements for neuroanatomical studies, Brain Behav. Evol., 91, 109, 10.1159/000488136
Heuer, 2019, Evolution of neocortical folding: a phylogenetic comparative analysis of MRI from 34 primate species, Cortex, 118, 275, 10.1016/j.cortex.2019.04.011
Assaf, 2020, Conservation of brain connectivity and wiring across the mammalian class, Nat. Neurosci., 23, 805, 10.1038/s41593-020-0641-7
Many Primates, 2019, Establishing an infrastructure for collaboration in primate cognition research, PLoS One, 14
Milham, 2018, An open resource for non-human primate imaging, Neuron, 100, 61, 10.1016/j.neuron.2018.08.039
Gould, 1979, The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme, Proc. R. Soc. Lond. B Biol. Sci., 205, 581, 10.1098/rspb.1979.0086
Symonds, 2014, A primer on phylogenetic generalised least squares, 105
Jerison, 1973
Halley, 2016, Prenatal brain-body allometry in mammals, Brain Behav. Evol., 88, 14, 10.1159/000447254
Pontzer, 2014, Primate energy expenditure and life history, Proc. Natl. Acad. Sci. U. S. A., 111, 1433, 10.1073/pnas.1316940111
Halley, 2019, Not all cortical expansions are the same: the coevolution of the neocortex and the dorsal thalamus in mammals, Curr. Opin. Neurobiol., 56, 78, 10.1016/j.conb.2018.12.003
Sherwood, 2020, Invariant synapse density and neuronal connectivity scaling in primate neocortical evolution, Cereb. Cortex, 30, 5604, 10.1093/cercor/bhaa149
Herculano-Houzel, 2007, Cellular scaling rules for primate brains, Proc. Natl. Acad. Sci. U. S. A., 104, 3562, 10.1073/pnas.0611396104
Charvet, 2017, Combining diffusion magnetic resonance tractography with stereology highlights increased cross-cortical integration in primates: Evolution of cross-cortical connections, J. Comp. Neurol., 525, 1075, 10.1002/cne.24115
Falcone, 2019, Cortical interlaminar astrocytes across the therian mammal radiation, J. Comp. Neurol., 527, 1654, 10.1002/cne.24605
Preuss, 1995, Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered, J. Cogn. Neurosci., 7, 1, 10.1162/jocn.1995.7.1.1
Kaas, 2012, The evolution of neocortex in primates, Prog. Brain Res., 195, 91, 10.1016/B978-0-444-53860-4.00005-2
Preuss, 2018, Brain evolution (primate), 1
Kaas, 1993, Archontan affinities as reflected in the visual system, 115
Krienen, 2020, Innovations present in the primate interneuron repertoire, Nature, 586, 262, 10.1038/s41586-020-2781-z
Herculano-Houzel, 2019, Longevity and sexual maturity vary across species with number of cortical neurons, and humans are no exception, J. Comp. Neurol., 527, 1689, 10.1002/cne.24564
van Woerden, 2012, Large brains buffer energetic effects of seasonal habitats in catarrhine primates: energetic effects of seasonal habitats in catarrhine primates, Evolution, 66, 191, 10.1111/j.1558-5646.2011.01434.x
van Woerden, 2014, Brief communication: seasonality of diet composition is related to brain size in New World Monkeys: seasonality of diet composition related to brain size, Am. J. Phys. Anthropol., 154, 628, 10.1002/ajpa.22546
van Woerden, 2010, Effects of seasonality on brain size evolution: evidence from strepsirrhine primates, Am. Nat., 176, 758, 10.1086/657045
Heldstab, 2016, Being fat and smart: a comparative analysis of the fat-brain trade-off in mammals, J. Hum. Evol., 100, 25, 10.1016/j.jhevol.2016.09.001
DeCasien, 2018, Encephalization and longevity evolved in a correlated fashion in Euarchontoglires but not in other mammals, Evolution, 72, 2617, 10.1111/evo.13633
Barton, 2011, Maternal investment, life histories, and the costs of brain growth in mammals, Proc. Natl. Acad. Sci. U. S. A., 108, 6169, 10.1073/pnas.1019140108
Street, 2019, Correction for Street et al., coevolution of cultural intelligence, extended life history, sociality, and brain size in primates, Proc. Natl. Acad. Sci. U. S. A., 116, 3929, 10.1073/pnas.1900438116
Powell, 2019, Maternal investment, life histories and the evolution of brain structure in primates, Proc. R. Soc. B, 286, 10.1098/rspb.2019.1608
Berto, 2018, Species-specific changes in a primate transcription factor network provide insights into the molecular evolution of the primate prefrontal cortex, Genome Biol. Evol., 10, 2023, 10.1093/gbe/evy149
Khrameeva, 2020, Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains, Genome Res., 30, 776, 10.1101/gr.256958.119
Xu, 2018, Human-specific features of spatial gene expression and regulation in eight brain regions, Genome Res., 28, 1097, 10.1101/gr.231357.117
Raghanti, 2018, A neurochemical hypothesis for the origin of hominids, Proc. Natl. Acad. Sci. U. S. A., 115, E1108, 10.1073/pnas.1719666115
Zhu, 2018, Spatiotemporal transcriptomic divergence across human and macaque brain development, Science, 362, 10.1126/science.aat8077
Bauernfeind, 2021, Tempo and mode of gene expression evolution in the brain across Primates, BioRxiv
Stephan, 1988, Comparative size of brains and brain components, 1
van Schaik, 2021, A farewell to the encephalization quotient: a new brain size measure for comparative primate cognition, Brain Behav. Evol., 96, 1, 10.1159/000517013
Deacon, 1990, Problems of ontogeny and phylogeny in brain-size evolution, Int. J. Primatol., 11, 237, 10.1007/BF02192870