Understanding the human brain: insights from comparative biology

Trends in Cognitive Sciences - Tập 26 - Trang 432-445 - 2022
Alex R. DeCasien1,2,3, Robert A. Barton4, James P. Higham1,2
1Department of Anthropology, New York University, New York, NY, USA
2New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, USA
3Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
4Evolutionary Anthropology Research Group, Durham University, Durham, UK

Tài liệu tham khảo

Herculano-Houzel, 2011, Gorilla and orangutan brains conform to the primate cellular scaling rules: implications for human evolution, Brain Behav. Evol., 77, 33, 10.1159/000322729 Darwin, 1859 Owen, 2009, Hippocampus minor, calcar avis, and the Huxley-Owen debate, Neurosurgery, 65, 1098, 10.1227/01.NEU.0000359535.84445.0B Barton, 2019, Proportional versus relative size as metrics in human brain evolution, Proc. Natl. Acad. Sci. U. S. A., 116, 3, 10.1073/pnas.1817200116 Boddy, 2017, Evidence of a conserved molecular response to selection for increased brain size in primates, Genome Biol. Evol., 9, 700, 10.1093/gbe/evx028 Aristide, 2016, Brain shape convergence in the adaptive radiation of New World monkeys, Proc. Natl. Acad. Sci. U. S. A., 113, 2158, 10.1073/pnas.1514473113 Dunbar, 1998, The social brain hypothesis, Evol. Anthropol. Issues News Rev., 6, 178, 10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-8 Clutton-Brock, 1980, Primates, brains and ecology, J. Zool., 190, 309, 10.1111/j.1469-7998.1980.tb01430.x Shultz, 2007, The evolution of the social brain: anthropoid primates contrast with other vertebrates, Proc. R. Soc. B Biol. Sci., 274, 2429, 10.1098/rspb.2007.0693 Schillaci, 2006, Sexual selection and the evolution of brain size in primates, PLoS One, 1, 10.1371/journal.pone.0000062 Schillaci, 2008, Primate mating systems and the evolution of neocortex size, J. Mammal., 89, 58, 10.1644/06-MAMM-A-417.1 Dunbar, 2007, Understanding primate brain evolution, Philos. Trans. R. Soc. B Biol. Sci., 362, 649, 10.1098/rstb.2006.2001 MacLean, 2009, Sociality, ecology, and relative brain size in lemurs, J. Hum. Evol., 56, 471, 10.1016/j.jhevol.2008.12.005 Barton, 1996, Neocortex size and behavioural ecology in primates, Proc. R. Soc. Lond. B Biol. Sci., 263, 173, 10.1098/rspb.1996.0028 DeCasien, 2017, Primate brain size is predicted by diet but not sociality, Nat. Ecol. Evol., 1, 0112, 10.1038/s41559-017-0112 Powell, 2017, Re-evaluating the link between brain size and behavioural ecology in primates, Proc. R. Soc. B Biol. Sci., 284 Schuppli, 2016, Life history, cognition and the evolution of complex foraging niches, J. Hum. Evol., 92, 91, 10.1016/j.jhevol.2015.11.007 DeCasien, 2019, Primate mosaic brain evolution reflects selection on sensory and cognitive specialization, Nat. Ecol. Evol., 3, 1483, 10.1038/s41559-019-0969-0 Heldstab, 2016, Manipulation complexity in primates coevolved with brain size and terrestriality, Sci. Rep., 6, 24528, 10.1038/srep24528 Navarrete, 2016, The coevolution of innovation and technical intelligence in primates, Philos. Trans. R. Soc. B Biol. Sci., 371, 10.1098/rstb.2015.0186 González-Forero, 2018, Inference of ecological and social drivers of human brain-size evolution, Nature, 557, 554, 10.1038/s41586-018-0127-x Barton, 1998, Visual specialization and brain evolution in primates, Proc. R. Soc. Lond. B Biol. Sci., 265, 1933, 10.1098/rspb.1998.0523 Fernandez, 2007, Sexual selection and trichromatic color vision in primates: statistical support for the preexisting-bias hypothesis, Am. Nat., 170, 10, 10.1086/518566 Rosati, 2017, Foraging cognition: reviving the ecological intelligence hypothesis, Trends Cogn. Sci., 21, 691, 10.1016/j.tics.2017.05.011 Kraft, 2021, The energetics of uniquely human subsistence strategies, Science, 374, 10.1126/science.abf0130 Preuss, 2002, Human-specific organization of primary visual cortex: alternating compartments of dense Cat-301 and calbindin immunoreactivity in layer 4A, Cereb. Cortex, 12, 671, 10.1093/cercor/12.7.671 Bryant, 2012, Evidence for ape and human specializations in geniculostriate projections from VGLUT2 immunohistochemistry, Brain Behav. Evol., 80, 210, 10.1159/000341135 Barrett, 2022, Experts in action: why we need an embodied social brain hypothesis, Philos. Trans. R. Soc. B Biol. Sci., 377, 10.1098/rstb.2020.0533 Fonseca-Azevedo, 2012, Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution, Proc. Natl. Acad. Sci. U. S. A., 109, 18571, 10.1073/pnas.1206390109 Isler, 2009, The expensive brain: a framework for explaining evolutionary changes in brain size, J. Hum. Evol., 57, 392, 10.1016/j.jhevol.2009.04.009 Sterck, 1997, The evolution of female social relationships in nonhuman primates, Behav. Ecol. Sociobiol., 41, 291, 10.1007/s002650050390 Janmaat, 2021, Using natural travel paths to infer and compare primate cognition in the wild, iScience, 24, 10.1016/j.isci.2021.102343 Castiglione, 2021, The influence of domestication, insularity and sociality on the tempo and mode of brain size evolution in mammals, Biol. J. Linn. Soc., 132, 221, 10.1093/biolinnean/blaa186 Logan, 2018, Beyond brain size: uncovering the neural correlates of behavioral and cognitive specialization, Comp. Cogn. Behav. Rev., 13, 55, 10.3819/CCBR.2018.130008 Diniz-Filho, 2019, Multiple components of phylogenetic non-stationarity in the evolution of brain size in fossil hominins, Evol. Biol., 46, 47, 10.1007/s11692-019-09471-z Miller, 2019, Quantitative uniqueness of human brain evolution revealed through phylogenetic comparative analysis, eLife, 8, 10.7554/eLife.41250 Melchionna, 2019, Macroevolutionary trends of brain mass in Primates, Biol. J. Linn. Soc., 129, 14 Pagel, 2002, Modelling the evolution of continuously varying characters on phylogenetic trees, 269 Smaers, 2021, The evolution of mammalian brain size, Sci. Adv., 7, 10.1126/sciadv.abe2101 Grabowski, 2016, Bigger brains led to bigger bodies?: the correlated evolution of human brain and body size, Curr. Anthropol., 57, 174, 10.1086/685655 MacLean, 2014, The evolution of self-control, Proc. Natl. Acad. Sci. U. S. A., 111, E2140, 10.1073/pnas.1323533111 Deaner, 2007, Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates, Brain Behav. Evol., 70, 115, 10.1159/000102973 Street, 2017, Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates, Proc. Natl. Acad. Sci. U. S. A., 114, 7908, 10.1073/pnas.1620734114 Herculano-Houzel, 2017, Numbers of neurons as biological correlates of cognitive capability, Curr. Opin. Behav. Sci., 16, 1, 10.1016/j.cobeha.2017.02.004 Burkart, 2017, The evolution of general intelligence, Behav. Brain Sci., 40 Fernandes, 2020, Macroevolutionary patterns and selection modes for general intelligence (G) and for commonly used neuroanatomical volume measures in primates, Intelligence, 80, 10.1016/j.intell.2020.101456 Poirier, 2020, How general is cognitive ability in non-human animals? A meta-analytical and multi-level reanalysis approach, Proc. R. Soc. B Biol. Sci., 287 Shuker, 2017, General intelligence does not help us understand cognitive evolution, Behav. Brain Sci., 40, 10.1017/S0140525X16001771 Ramus, 2017, General intelligence is an emerging property, not an evolutionary puzzle, Behav. Brain Sci., 40, 10.1017/S0140525X1600176X Barton, 2000, Mosaic evolution of brain structure in mammals, Nature, 405, 1055, 10.1038/35016580 Vanier, 2019, Distinct patterns of hippocampal and neocortical evolution in primates, Brain Behav. Evol., 93, 171, 10.1159/000500625 Preuss, 2007, Evolutionary specializations of primate brain systems, 625 Heritage, 2014, Modeling olfactory bulb evolution through primate phylogeny, PLoS One, 9, 10.1371/journal.pone.0113904 Barton, 2006, Olfactory evolution and behavioral ecology in primates, Am. J. Primatol., 68, 545, 10.1002/ajp.20251 Cerrito, 2021, The expression of care: alloparental care frequency predicts neural control of facial muscles in primates, Evolution, 75, 1727, 10.1111/evo.14275 Rosati, 2014, The ecology of spatial memory in four lemur species, Anim. Cogn., 17, 947, 10.1007/s10071-014-0727-2 Rosati, 2012, Chimpanzees and bonobos exhibit divergent spatial memory development: spatial memory development in chimpanzees and bonobos, Dev. Sci., 15, 840, 10.1111/j.1467-7687.2012.01182.x Schilder, 2019, Evolutionary shifts dramatically reorganized the human hippocampal complex, J. Comp. Neurol., 528, 3143, 10.1002/cne.24822 Todorov, 2019, Primate hippocampus size and organization are predicted by sociality but not diet, Proc. R. Soc. B, 286, 10.1098/rspb.2019.1712 Pereira-Pedro, 2020, A morphometric comparison of the parietal lobe in modern humans and Neanderthals, J. Hum. Evol., 142, 10.1016/j.jhevol.2020.102770 Gunz, 2019, Neanderthal introgression sheds light on modern human endocranial globularity, Curr. Biol., 29, 120, 10.1016/j.cub.2018.10.065 Neubauer, 2018, Endocasts and the evo-devo approach to study human brain evolution, 173 Hublin, 2017, New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens, Nature, 546, 289, 10.1038/nature22336 Neubauer, 2018, The evolution of modern human brain shape, Sci. Adv., 4, 10.1126/sciadv.aao5961 Smaers, 2019, Brain size expansion in primates and humans is explained by a selective modular expansion of the cortico-cerebellar system, Cortex, 118, 292, 10.1016/j.cortex.2019.04.023 Barton, 2012, Embodied cognitive evolution and the cerebellum, Philos. Trans. R. Soc. B Biol. Sci., 367, 2097, 10.1098/rstb.2012.0112 Herculano-Houzel, 2010, Coordinated scaling of cortical and cerebellar numbers of neurons, Front. Neuroanat., 4, 12 MacLeod, 2003, Expansion of the neocerebellum in Hominoidea, J. Hum. Evol., 44, 401, 10.1016/S0047-2484(03)00028-9 Barton, 2014, Rapid evolution of the cerebellum in humans and other great apes, Curr. Biol., 24, 2440, 10.1016/j.cub.2014.08.056 Smaers, 2018, A cerebellar substrate for cognition evolved multiple times independently in mammals, eLife, 7, 10.7554/eLife.35696 Harrison, 2017, Genetics of cerebellar and neocortical expansion in anthropoid primates: a comparative approach, Brain Behav. Evol., 89, 274, 10.1159/000477432 Schmidt-Nielsen, 1984 Passingham, 2014, Is the prefrontal cortex especially enlarged in the human brain? Allometric relations and remapping factors, Brain Behav. Evol., 84, 156, 10.1159/000365183 Smaers, 2017, Exceptional evolutionary expansion of prefrontal cortex in great apes and humans, Curr. Biol., 27, 714, 10.1016/j.cub.2017.01.020 Donahue, 2018, Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates, Proc. Natl. Acad. Sci. U. S. A., 115, E5183, 10.1073/pnas.1721653115 Barton, 2013, Reply to Smaers: getting human frontal lobes in proportion, Proc. Natl. Acad. Sci. U. S. A., 110, E3683, 10.1073/pnas.1310334110 Gabi, 2016, No relative expansion of the number of prefrontal neurons in primate and human evolution, Proc. Natl. Acad. Sci. U. S. A., 113, 9617, 10.1073/pnas.1610178113 Finlay, 1995, Linked regularities in the development and evolution of mammalian brains, Science, 268, 1578, 10.1126/science.7777856 Montgomery, 2016, Brain evolution and development: adaptation, allometry and constraint, Proc. R. Soc. B Biol. Sci., 283 Montgomery, 2013, The human frontal lobes: not relatively large but still disproportionately important? A commentary on Barton and Venditti, Brain Behav. Evol., 82, 147, 10.1159/000354157 Avin, 2021, An agent-based model clarifies the importance of functional and developmental integration in shaping brain evolution, Evol. Biol., 19, 97 Moore, 2017, Concerted and mosaic evolution of functional modules in songbird brains, Proc. R. Soc. B Biol. Sci., 284 Hoops, 2017, Evidence for concerted and mosaic brain evolution in dragon lizards, Brain Behav. Evol., 90, 211, 10.1159/000478738 Sukhum, 2018, Extreme enlargement of the cerebellum in a clade of teleost fishes that evolved a novel active sensory system, Curr. Biol., 28, 3857, 10.1016/j.cub.2018.10.038 Smaers, 2013, Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution, Proc. R. Soc. B Biol. Sci., 280 Fong, 2021, Rapid mosaic brain evolution under artificial selection for relative telencephalon size in the guppy (Poecilia reticulata), Sci. Adv., 7, 10.1126/sciadv.abj4314 Henriksen, 2016, The domesticated brain: genetics of brain mass and brain structure in an avian species, Sci. Rep., 6, 34031, 10.1038/srep34031 Li, 2017, Detecting the QTL-allele system conferring flowering date in a nested association mapping population of soybean using a novel procedure, Theor. Appl. Genet., 130, 2297, 10.1007/s00122-017-2960-y Noreikiene, 2015, Quantitative genetic analysis of brain size variation in sticklebacks: support for the mosaic model of brain evolution, Proc. R. Soc. B Biol. Sci., 282 Hibar, 2015, Common genetic variants influence human subcortical brain structures, Nature, 520, 224, 10.1038/nature14101 Rentería, 2014, Genetic architecture of subcortical brain regions: common and region-specific genetic contributions, Genes Brain Behav., 13, 821, 10.1111/gbb.12177 Wen, 2016, Distinct genetic influences on cortical and subcortical brain structures, Sci. Rep., 6, 32760, 10.1038/srep32760 Rimol, 2010, Cortical thickness is influenced by regionally specific genetic factors, Biol. Psychiatry, 67, 493, 10.1016/j.biopsych.2009.09.032 Charvet, 2011, Evo-devo and brain scaling: candidate developmental mechanisms for variation and constancy in vertebrate brain evolution, Brain Behav. Evol., 78, 248, 10.1159/000329851 Pipes, 2013, The non-human primate reference transcriptome resource (NHPRTR) for comparative functional genomics, Nucleic Acids Res., 41, D906, 10.1093/nar/gks1268 Navarrete, 2018, Primate brain anatomy: new volumetric MRI measurements for neuroanatomical studies, Brain Behav. Evol., 91, 109, 10.1159/000488136 Heuer, 2019, Evolution of neocortical folding: a phylogenetic comparative analysis of MRI from 34 primate species, Cortex, 118, 275, 10.1016/j.cortex.2019.04.011 Assaf, 2020, Conservation of brain connectivity and wiring across the mammalian class, Nat. Neurosci., 23, 805, 10.1038/s41593-020-0641-7 Many Primates, 2019, Establishing an infrastructure for collaboration in primate cognition research, PLoS One, 14 Milham, 2018, An open resource for non-human primate imaging, Neuron, 100, 61, 10.1016/j.neuron.2018.08.039 Gould, 1979, The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme, Proc. R. Soc. Lond. B Biol. Sci., 205, 581, 10.1098/rspb.1979.0086 Symonds, 2014, A primer on phylogenetic generalised least squares, 105 Jerison, 1973 Halley, 2016, Prenatal brain-body allometry in mammals, Brain Behav. Evol., 88, 14, 10.1159/000447254 Pontzer, 2014, Primate energy expenditure and life history, Proc. Natl. Acad. Sci. U. S. A., 111, 1433, 10.1073/pnas.1316940111 Halley, 2019, Not all cortical expansions are the same: the coevolution of the neocortex and the dorsal thalamus in mammals, Curr. Opin. Neurobiol., 56, 78, 10.1016/j.conb.2018.12.003 Sherwood, 2020, Invariant synapse density and neuronal connectivity scaling in primate neocortical evolution, Cereb. Cortex, 30, 5604, 10.1093/cercor/bhaa149 Herculano-Houzel, 2007, Cellular scaling rules for primate brains, Proc. Natl. Acad. Sci. U. S. A., 104, 3562, 10.1073/pnas.0611396104 Charvet, 2017, Combining diffusion magnetic resonance tractography with stereology highlights increased cross-cortical integration in primates: Evolution of cross-cortical connections, J. Comp. Neurol., 525, 1075, 10.1002/cne.24115 Falcone, 2019, Cortical interlaminar astrocytes across the therian mammal radiation, J. Comp. Neurol., 527, 1654, 10.1002/cne.24605 Preuss, 1995, Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered, J. Cogn. Neurosci., 7, 1, 10.1162/jocn.1995.7.1.1 Kaas, 2012, The evolution of neocortex in primates, Prog. Brain Res., 195, 91, 10.1016/B978-0-444-53860-4.00005-2 Preuss, 2018, Brain evolution (primate), 1 Kaas, 1993, Archontan affinities as reflected in the visual system, 115 Krienen, 2020, Innovations present in the primate interneuron repertoire, Nature, 586, 262, 10.1038/s41586-020-2781-z Herculano-Houzel, 2019, Longevity and sexual maturity vary across species with number of cortical neurons, and humans are no exception, J. Comp. Neurol., 527, 1689, 10.1002/cne.24564 van Woerden, 2012, Large brains buffer energetic effects of seasonal habitats in catarrhine primates: energetic effects of seasonal habitats in catarrhine primates, Evolution, 66, 191, 10.1111/j.1558-5646.2011.01434.x van Woerden, 2014, Brief communication: seasonality of diet composition is related to brain size in New World Monkeys: seasonality of diet composition related to brain size, Am. J. Phys. Anthropol., 154, 628, 10.1002/ajpa.22546 van Woerden, 2010, Effects of seasonality on brain size evolution: evidence from strepsirrhine primates, Am. Nat., 176, 758, 10.1086/657045 Heldstab, 2016, Being fat and smart: a comparative analysis of the fat-brain trade-off in mammals, J. Hum. Evol., 100, 25, 10.1016/j.jhevol.2016.09.001 DeCasien, 2018, Encephalization and longevity evolved in a correlated fashion in Euarchontoglires but not in other mammals, Evolution, 72, 2617, 10.1111/evo.13633 Barton, 2011, Maternal investment, life histories, and the costs of brain growth in mammals, Proc. Natl. Acad. Sci. U. S. A., 108, 6169, 10.1073/pnas.1019140108 Street, 2019, Correction for Street et al., coevolution of cultural intelligence, extended life history, sociality, and brain size in primates, Proc. Natl. Acad. Sci. U. S. A., 116, 3929, 10.1073/pnas.1900438116 Powell, 2019, Maternal investment, life histories and the evolution of brain structure in primates, Proc. R. Soc. B, 286, 10.1098/rspb.2019.1608 Berto, 2018, Species-specific changes in a primate transcription factor network provide insights into the molecular evolution of the primate prefrontal cortex, Genome Biol. Evol., 10, 2023, 10.1093/gbe/evy149 Khrameeva, 2020, Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains, Genome Res., 30, 776, 10.1101/gr.256958.119 Xu, 2018, Human-specific features of spatial gene expression and regulation in eight brain regions, Genome Res., 28, 1097, 10.1101/gr.231357.117 Raghanti, 2018, A neurochemical hypothesis for the origin of hominids, Proc. Natl. Acad. Sci. U. S. A., 115, E1108, 10.1073/pnas.1719666115 Zhu, 2018, Spatiotemporal transcriptomic divergence across human and macaque brain development, Science, 362, 10.1126/science.aat8077 Bauernfeind, 2021, Tempo and mode of gene expression evolution in the brain across Primates, BioRxiv Stephan, 1988, Comparative size of brains and brain components, 1 van Schaik, 2021, A farewell to the encephalization quotient: a new brain size measure for comparative primate cognition, Brain Behav. Evol., 96, 1, 10.1159/000517013 Deacon, 1990, Problems of ontogeny and phylogeny in brain-size evolution, Int. J. Primatol., 11, 237, 10.1007/BF02192870