Understanding the hierarchical controls of geographical features on hydrological responses in humid mountainous areas through a stepwise clustering scheme

Yin Yang1, Jintao Liu1, Shuang Yang1, Ronghai He2
1State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, People’s Republic of China
2State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210098, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Addor N, Nearing G, Prieto C, Newman AJ, Le Vine N, Clark MP (2018) A ranking of hydrological signatures based on their predictability in space. Water Resour Res 54(11):8792–8812. https://doi.org/10.1029/2018WR022606

Allam A, Moussa R, Najem W, Bocquillon C (2020) Specific climate classification for Mediterranean hydrology and future evolution under Med-CORDEX regional climate model scenarios. Hydrol Earth Syst Sci 24(9):4503–4521. https://doi.org/10.5194/hess-24-4503-2020,2020

Arheimer B, Pimentel R, Isberg K, Crochemore L, Andersson J, Hasan A, Pineda L (2020) Global catchment modelling usingWorld-Wide HYPE (WWH), open data, and stepwise parameter estimation. Hydrol Earth Syst Sci 24(2):535–559. https://doi.org/10.5194/hess-24-535-2020,2020

Athira P, Sudheer KP, Cibin R, Chaubey I (2016) Predictions in ungauged basins: an approach for regionalization of hydrological models considering the probability distribution of model parameters. Stoch Environ Res Risk Assess 30(4):1131–1149. https://doi.org/10.1007/s00477-015-1190-6

Betterle A, Schirmer M, Botter G (2019) Flow dynamics at the continental scale: Streamflow correlation and hydrological similarity. Hydrol Process 33(4):627–646. https://doi.org/10.1002/hyp.13350

Bloomfield JP, Allen DJ, Griffiths KJ (2009) Examining geological controls on baseflow index (BFI) using regression analysis: an illustration from the Thames Basin. UK J Hydrol 373(1–2):164–176. https://doi.org/10.1016/j.jhydrol.2009.04.025

Calderon H, Uhlenbrook S (2016) Characterizing the climatic water balance dynamics and different runoff components in a poorly gauged tropical forested catchment. Nicaragua Hydrol Sci J 61(14):2465–2480. https://doi.org/10.1080/02626667.2014.964244

Ching-Fu C, Rubin Y (2019) Regionalization with hierarchical hydrologic similarity and ex situ data in the context of groundwater recharge estimation at ungauged watersheds. Hydrol Earth Syst Sci 23(5):2417–2438. https://doi.org/10.5194/hess-23-2417-2019

Choubin B, Solaimani K, Rezanezhad F, Roshan MH, Malekian A, Shamshirband S (2019) Streamflow regionalization using a similarity approach in ungauged basins: application of the geo-environmental signatures in the Karkheh River Basin, Iran. CATENA 182:104128. https://doi.org/10.1016/j.catena.2019.104128

Clark MP, Bierkens MF, Samaniego L, Woods RA, Uijlenhoet R, Bennett KE et al (2017) The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism. Hydrol Earth Syst Sci 21(7):3427–3440. https://doi.org/10.5194/hess-21-3427-2017

Dijk A, Gash JH, Gorsel EV, Blanken PD, Wohlfahrt G (2015) Rainfall interception and the coupled surface water and energy balance. Agric for Meteorol 214:402–415. https://doi.org/10.1016/j.agrformet.2015.09.006

Donnelly C, Andersson JCM, Arheimer B (2016) Using flow signatures and catchment similarities to evaluate a multi-basin model (E-HYPE) across Europe. Hydrol Sci J 61(2):255–273. https://doi.org/10.1080/02626667.2015.1027710

Du TL, Lee H, Bui DD, Arheimer B, Li HY, Olsson J et al (2020) Streamflow prediction in “geopolitically ungauged” basins using satellite observations and regionalization at subcontinental scale. J Hydrol 588:125016. https://doi.org/10.1016/j.jhydrol.2020.125016

Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031. https://doi.org/10.1029/91WR02985

Dunne T (1983) Relation of field studies and modeling in the prediction of storm runoff. J Hydrol 65(1–3):25–48. https://doi.org/10.1016/0022-1694(83)90209-3

Fenicia F, Kavetski D, Savenije HH, Pfister L (2016) From spatially variable streamflow to distributed hydrological models: analysis of key modeling decisions. Water Resour Res 52:954–989. https://doi.org/10.1002/2015WR017398

Freeze RA (1974) Streamflow generation. Rev Geophys 12(4):627–647. https://doi.org/10.1029/RG012i004p00627

Gao H, Sabo JL, Chen X, Liu Z, Yang Z, Ren Z, Liu M (2018) Landscape heterogeneity and hydrological processes: a review of landscape-based hydrological models. Landsc Ecol 33(9):1461–1480. https://doi.org/10.1007/s10980-018-0690-4

Gaucherel C, Frelat R, Polidori L, El Hage M, Cudennec C, Mondesir P, Moron V (2019) Weak relationships between landforms and hydro-climatologic processes: a case study in Haiti. Hydrol Res 50(2):744–760. https://doi.org/10.2166/nh.2018.041

Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004) Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. J Hydrol 286(1–4):249–270. https://doi.org/10.1016/j.jhydrol.2003.09.029

Götzinger J, Bárdossy A (2007) Comparison of four regionalisation methods for a distributed hydrological model. J Hydrol 333(2–4):374–384. https://doi.org/10.1016/j.jhydrol.2006.09.008

Han X, Liu J, Srivastav P, Mitra S, He R (2020) Effects of critical zone structure on patterns of flow connectivity induced by rainstorms in a steep forested catchment. J Hydrol 587:125032. https://doi.org/10.1016/j.jhydrol.2020.125032

Jehn FU, Bestian K, Breuer L, Kraft P, Houska T (2020) Using hydrological and climatic catchment clusters to explore drivers of catchment behavior. Hydrol Earth Syst Sci 24(3):1081–1100. https://doi.org/10.5194/hess-24-1081-2020

Jencso KG, McGlynn BL (2011) Hierarchical controls on runoff generation: topographically driven hydrologic connectivity, geology, and vegetation. Water Resour Res. https://doi.org/10.1029/2011WR010666

Jie MX, Chen H, Xu CY, Zeng Q, Chen J, Kim JS et al (2018) Transferability of conceptual hydrological models across temporal resolutions: approach and application. Water Resour Manag 32(4):1367–1381. https://doi.org/10.1007/s11269-017-1874-4

Jin Y, Liu J, Lin L, Wang A, Chen X (2018) Exploring hydrologically similar catchments in terms of the geographical features of upstream regions. Hydrol Res 49(5):1467–1483. https://doi.org/10.2166/nh.2017.191

Kuentz A, Arheimer B, Hundecha Y, Wagener T (2017) Understanding hydrologic variability across Europe through catchment classification. Hydrol Earth Syst Sci 21(6):2863–2879. https://doi.org/10.5194/hess-21-2863-2017,2017

Liu J, Chen X, Zhang J, Flury M (2009) Coupling the Xinanjiang model to a kinematic flow model based on digital drainage networks for flood forecasting. Hydrol Process 23(9):1337–1348. https://doi.org/10.1002/hyp.7255

Liu J, Han X, Chen X, He R, Wu P (2019) Prediction of soil thicknesses in a headwater hillslope with constrained sampling data. CATENA 177:101–113. https://doi.org/10.1016/j.catena.2019.02.009

Loritz R, Gupta H, Jackisch C, Westhoff M, Kleidon A, Ehret U, Zehe E (2018) On the dynamic nature of hydrological similarity. Hydrol Earth Syst Sci 22(7):3663–3684. https://doi.org/10.5194/hess-22-3663-2018

Loritz R, Kleidon A, Jackisch C, Westhoff M, Ehret U, Gupta H, Zehe E (2019) A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation. Hydrol Earth Syst Sci 23(9):3807–3821. https://doi.org/10.5194/hess-23-3807-2019

Narbondo S, Gorgoglione A, Crisci M, Chreties C (2020) Enhancing physical similarity approach to predict runoff in ungauged basins in sub-tropical regions. Water 12(2):528. https://doi.org/10.3390/w12020528

Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(3):282–290. https://doi.org/10.1016/0022-1694(70)90255-6

Oudin L, Andréassian V, Perrin C, Michel C, Le Moine N (2008) Spatial proximity, physical similarity, regression and ungaged catchments: a comparison of regionalization approaches based on 913 French catchments. Water Resour Res. https://doi.org/10.1029/2007WR006240

Pagliero L, Bouraoui F, Diels J, Willems P, McIntyre N (2019) Investigating regionalization techniques for large-scale hydrological modelling. J Hydrol 570:220–235. https://doi.org/10.1016/j.jhydrol.2018.12.071

Parajka J, Viglione A, Rogger M, Salinas JL, Sivapalan M, Blöschl G (2013) Comparative assessment of predictions in ungauged basins: part 1: runoff hydrograph studies. Hydrol Earth Syst Sci Discuss 17(5):1783–1795. https://doi.org/10.5194/hess-17-1783-2013

Pechlivanidis IG, Crochemore L, Rosberg J, Bosshard T (2020) What are the key drivers controlling the quality of seasonal streamflow forecasts? Water Resour Res 56(6):e2019WR026987. https://doi.org/10.1029/2019WR026987

Peñuela A, Javaux M, Bielders CL (2015) How do slope and surface roughness affect plot-scale overland flow connectivity? J Hydrol 528:192–205. https://doi.org/10.1016/j.jhydrol.2015.06.031

Pfister L, Martinez-Carreras N, Hissler C, Klaus J, Carrer GE, Stewart MK et al (2017) Bedrock geology controls on catchment storage, mixing, and release: a comparative analysis of 16 nested catchments. Hydrol Process 31(10):1828–1845. https://doi.org/10.1002/hyp.11134

Pinto D, Shrestha S, Babel MS, Ninsawat S (2017) Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique. Appl Water Sci 7(1):503–519. https://doi.org/10.1007/s13201-015-0270-6

Porzig EL, Seavy NE, Owens BE, Gardali T (2018) Field evaluation of a simple infiltration test and its relationship with bulk density and soil organic carbon in California rangelands. J Soil Water Conserv 73(2):200–206. https://doi.org/10.2489/jswc.73.2.200

Prancevic JP, Kirchner JW (2019) Topographic controls on the extension and retraction of flowing streams. Geophys Res Lett 46(4):2084–2092. https://doi.org/10.1029/2018GL081799

Saxton KE, Rawls WJ (2006) Soil Water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70(5):1569. https://doi.org/10.2136/sssaj2005.0117

Sayama T, McDonnell JJ, Dhakal A, Sullivan K (2011) How much water can a watershed store? Hydrol Process 25(25):3899–3908. https://doi.org/10.1002/hyp.8288

Schmidt J, Evans IS, Brinkmann J (2003) Comparison of polynomial models for land surface curvature calculation. Int J Geogr Inf Sci 17(8):797–814. https://doi.org/10.1080/13658810310001596058

Singh R, Archfield SA, Wagener T (2014) Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments–a comparative hydrology approach. J Hydrol 517:985–996. https://doi.org/10.1016/j.jhydrol.2014.06.030

Tarasova L, Basso S, Poncelet C, Merz R (2018) Exploring controls on rainfall-runoff events: 2: regional patterns and spatial controls of event characteristics in Germany. Water Resour Res 54(10):7688–7710. https://doi.org/10.1029/2018WR022588

Tegegne G, Kim YO (2018) Modelling ungauged catchments using the catchment runoff response similarity. J Hydrol 564:452–466. https://doi.org/10.1016/j.jhydrol.2018.07.042

Teutschbein C, Grabs T, Laudon H, Karlsen RH, Bishop K (2018) Simulating streamflow in ungauged basins under a changing climate: the importance of landscape characteristics. J Hydrol 561:160–178. https://doi.org/10.1016/j.jhydrol.2018.03.060

Wagener T, Sivapalan M, Troch P, Woods R (2007) Catchment classification and hydrologic similarity. Geogr Compass 1:901–931. https://doi.org/10.1111/j.1749-8198.2007.00039.x

Xiao D, Shi Y, Brantley SL, Forsythe B, DiBiase R, Davis K, Li L (2019) Streamflow generation from catchments of contrasting lithologies: the role of soil properties, topography, and catchment size. Water Resour Res 55(11):9234–9257. https://doi.org/10.1029/2018WR023736

Yaeger M, Coopersmith E, Ye S, Cheng L, Viglione A, Sivapalan M (2012) Exploring the physical controls of regional patterns of flow duration curves–Part 4: a synthesis of empirical analysis, process modeling and catchment classification. Hydrol Earth Syst Sci 16(11):4483–4498. https://doi.org/10.5194/hess-16-4483-2012,2012

Zhao RJ (1992) The Xinanjiang model applied in China. J Hydrol 135(1–4):371–381. https://doi.org/10.1016/0022-1694(92)90096-E

Zehe E, Ehret U, Pfister L, Blume T, Schröder B, Westhoff M et al (2014) HESS Opinions: from response units to functional units: a thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments. Hydrol Earth Syst Sci 18(11):4635–4655. https://doi.org/10.5194/hess-18-4635-2014