Understanding the first-order inhomogeneous linear elasticity through local gauge transformations
Tóm tắt
It is well known that classical linear elasticity equations are not form-invariant under local transformations. This is intrinsically related to the inhomogeneity of elastic media. However, the reported new linear elasticity equations for inhomogeneous media may appear in different forms. This paper tries to clarify this issue by investigating the form-invariance of the Lagrangian under local temporal or spatial gauge transformations. In this way, these new equations in different forms can be easily understood as the results from different choices of gauge fixing schemes. It recommends to choose appropriate gauges with clear physical meanings to simplify calculations.
Tài liệu tham khảo
Timoshenko, S.P., Goodier, J.N.: Theory of elasticity, 3rd edn. McGraw-Hill (1970)
Willis, J.R.: Dynamics of composites continuum micromechanics CISM courses and lectures. Springer (1997)
Futhazar, G., Le Marrec, L., Rakotomanana, L.R.: Covariant gradient continua applied to wave propagation within defective material. Arch. Appl. Mech. 84, 1339–1356 (2014)
Willis, J.R.: Variational principles for dynamics problems in inhomogeneous elastic media. Wave Motion 3, 1–11 (1981)
Willis, J.R.: From statics of composites to acoustic metamaterials. Philos. Trans. R. Soc. Lond. A 377, 20190099 (2019)
Willis, J.R.: Some personal reflections on acoustic metamaterials. Wave Motion 108, 102834 (2022)
Schurig, D., et al.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)
Pendry, J.B.: Negative refraction. Contemp. Phys. 45, 191–202 (2004)
Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)
Leonhardt, U.: Optical conformal mapping. Science 312, 1777–1780 (2006)
Dolin, L.S.: Izvestiya vysshikh uchebnykh zavedenii. Radiofizika 4, 964–967 (1961). The English translation is available at https://www.math.utah.edu/~milton/DolinTrans2.pdf
McCall, M., et al.: Roadmap on transformation optics. J. Opt. 20, 063001 (2018)
Chen, H., Chan, C.T.: Acoustic cloaking and transformation acoustics. J. Phys. D: Appl. Phys. 43, 113001 (2010)
Milton, G.W., Briane, M., Willis, J.R.: On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006)
Norris, A.N., Shuvalov, A.L.: Elastic cloaking theory. Wave Motion 48, 525–538 (2011)
Srivastava, A., Nemat-Nasser, S.: Overall dynamic properties of three-dimensional periodic elastic composites. Proc. R. Soc. A 468, 269–287 (2012)
Norris, A.N., Shuvalov, A.L., Kutsenko, A.A.: Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems. Proc. R. Soc. A 468, 1629–1651 (2012)
Nassar, H., He, Q.C., Auffray, N.: Willis elastodynamic homogenization theory revisited for periodic media. J. Mech. Phys. Solids 77, 158–178 (2015)
Muhlestein, M.B., et al.: Reciprocity, passivity and causality in Willis materials. Proc. R. Soc. A 472, 20160604 (2017)
Michael, B., et al.: Experimental evidence of Willis coupling in a one-dimensional effective material element. Nat. Commun. 8, 15625 (2017)
Liu, Y.Q., et al.: Willis metamaterial on a structured beam. Phys. Rev. X 9, 1–12 (2019)
Quan, L., et al.: Maximum Willis coupling in acoustic scatterers. Phys. Rev. Lett. 120, 254301 (2018)
Lau, J., et al.: Coupled decorated membrane resonators with large Willis coupling. Phys. Rev. Appl. 12, 014032 (2019)
Nassar, H., et al.: Modulated phononic crystals non-reciprocal wave propagation and Willis materials. J. Mech. Phys. Solids 101, 10–29 (2017)
Xiang, Z.H.: The form-invariance of wave equations without requiring a priori relations between field variables. Sci. China Phys. Mech. 57, 2285–2296 (2014)
Nemat-Nasser, S., Hori, M.: Micromechanics: overall properties of heterogeneous materials. Elsevier (1993)
Willis, J.R.: The nonlocal influence of density variations in a composite. Int. J. Solids Struct. 7, 805–817 (1985)
Milton, G.W., Willis, J.R.: On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. A 463, 2881–2903 (2007)
Maraner, P.: On the Jacobi metric for a general Lagrangian system. J. Math. Phys. 60, 112901 (2019)
Xiang, Z.H., Yao, R.W.: Realizing the Willis equations with pre-stresses. J. Mech. Phys. Solids 87, 1–6 (2016)
Yao, R.W., Xiang, Z.H.: One dimensional Willis-form equations can retain time synchronization under spatial transformations. Int. J. Solids Struct. 141–142, 73–77 (2018)
Yao, R.W., et al.: An experimental verification of the one-dimensional static Willis-form equations. Int. J. Solids Struct. 134, 283–292 (2018)
Hu, Z.H., et al.: Identify the distribution of 2D residual stresses around notches based on the Willis-form equations. Inverse Probl. Sci. En. 29, 736–758 (2021)
Sun, Y.X., Xiang, Z.H.: Buckling analyses of spherical shells by the finite element method based on the Willis-form equations. Int. J. Appl. Mech. 11, 1950091 (2019)
Sun, Y.X., Xiang, Z.H.: A natural perturbation method with symmetric secant stiffness for stability analyses of quasi-perfect thin-walled structures. Thin Wall. Struct. 164, 107870 (2021)
Willis, J.R.: Effective constitutive relations for waves in composites and metamaterials. Proc. R. Soc. A 467(2131), 1865–1879 (2011)
Willis, J.R.: A comparison of two formulations for effective relations for waves in a composite. Mech. Mater. 47, 51–60 (2012)
Kline, M.: Mathematical thought from ancient to modern times. Oxford University Press (1972)
Truesdell, C., Noll, W.: The non-linear field theories of mechanics. Springer (2004)
Frewer, M.: More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech. 202, 213–246 (2009)
Cao, T.Y.: Conceptual developments of 20th century field theories, 2nd edn. Cambridge University Press (2019)
Konopleva, N.P., Popov, V.N.: Gauge fields. Harwood Academic Publishers (1981)
Moriyasu, K.: An elementary primer for gauge theory. World Scientific Publishing Co Pte Ltd (1983)
O’Raifeartaigh, L., Straumann, N.: Gauge theory: historical origins and some modern developments. Rev. Mod. Phys. 72, 1–23 (2000)
Jackson, J.D., Okun, L.B.: Historical roots of gauge invariance. Rev. Mod. Phys. 73, 663–680 (2001)
Brading, K.A.: Which symmetry? Noether, Weyl, and conservation of electric charge. Stud. Hist. Philos. Modern Phys. 33, 3–22 (2002)
Yang, C.N., Mills, R.L.: Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191–195 (1954)
Kondo, K.: Non-Riemanian geometry of imperfect crystals from macroscopic viewpoint. In: Memoirs of the Unifying Study of Basic Problems in Engineering Sciences by Means of Geometry, Vol. I, ed. K. Kondo, Division D, Gakujutsu Benken Fukyu-Kai, Tokyo, (1955)
Bilby, B.A., Smith, E.: Continuous distributions of dislocations: a new application of the method of non Riemanian geometry. Proc. R. Soc. A 231, 263–273 (1955)
Kröner, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer-Verlag (1958)
Maugin, G.A.: Continuum mechanics through the ages – from the renaissance to the twentieth century. Springer (2016)
Edelen, D.G.B., Lagoudas, D.C.: Gauge theory and defects in solids. Elsevier (1988)
Rakotomanana, L.R.: A geometric approach to thermomechanics of dissipating continua. Springer (2004)
Yavari, A., Goriely, A.: Riemann-Cartan geometry of nonlinear dislocation mechanics. Arch. Rational Mech. Anal. 205, 59–118 (2012)
Romano, G., Barretta, R., Diaco, M.: Geometric continuum mechanics. Meccanica 49, 111–133 (2014)
Zou, W.N.: Recasting theory of elasticity with micro-finite elements. Acta Mech. Sin. 31, 679–684 (2015)
Lagoudas, D.C., Edelen, D.G.B.: Material and spatial gauge theories of solids — I. gauge constructs, geometry, and kinematics. Int. J. Eng. Sci. 27, 411–431 (1988)
Pathrikar, A., Rahaman, M.M., Roy, D.: A gauge theory for brittle damage in solids and a peridynamics implementation. Comput. Methods Appl. Mech. Engrg. 385, 114036 (2021)
Olver, P.J.: Equivalence, invariants, and symmetry. Cambridge University Press (1995)
Schwarzbach, Y.K.: The noether theorems. Springer (2011)
Maugin, G.A.: Material inhomogeneities in Elasticity. Chapman & Hall (1993)
Kienzler, R., Herrmann, G.: Mechanics in Material space. Springer (2000)
Eshelby, J.D.: The force on an elastic singularity. Philos. Trans. R. Soc. Lond. A 244, 87–112 (1951)
Eshelby, J.D.: The elastic energy-momentum tensor. J. Elast. 5, 321–335 (1975)
Dineva, P.S., Manolis, G.D., Wuttke, F.: Fundamental solutions in 3D elastodynamics for the BEM: a review. Eng. Anal. Bound. Elem. 105, 47–69 (2019)
Qu, H., Liu, X., Hu, G.: Topological valley states in sonic crystals with Willis coupling. Appl. Phys. Lett. 119, 051903 (2021)
Yang, Y.B., Chiou, H.T.: Rigid body motion test for nonlinear analysis with beam elements. J. Eng. Mech. 113, 1404–1419 (1987)
Roya, P., Kumara, S., Roy, D.: Cauchy-Maxwell equations: a space–time conformal gauge theory for coupled electromagnetism and elasticity. Int. J. Non-Linear. Mech. 126, 103542 (2020)