Understanding the current plummeting phenomenon in microbial fuel cells (MFCs)

Journal of Water Process Engineering - Tập 40 - Trang 101984 - 2021
Dunzhu Li1,2, Yunhong Shi1,2, Fei Gao1,2, Luming Yang1,2, Siyuan Li3, Liwen Xiao1,2
1Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
2TrinityHaus, Trinity College Dublin, Dublin 2, Ireland
3China Communications Construction Company-Dredging Group, Beijing, China

Tài liệu tham khảo

Kodali, 2017, Air breathing cathodes for microbial fuel cell using Mn-, Fe-, Co-and Ni-containing platinum group metal-free catalysts, Electrochim. Acta, 231, 115, 10.1016/j.electacta.2017.02.033 Logan, 2006, Microbial fuel cells: methodology and technology, Environ. Sci. Technol., 40, 5181, 10.1021/es0605016 Li, 2020, Characterising and control of ammonia emission in microbial fuel cells, Chem. Eng. J. Khan, 2020, Investigating microbial fuel cell aided bio-remediation of mixed phenolic contaminants under oxic and anoxic environments, Biochem. Eng. J., 155, 10.1016/j.bej.2019.107485 e Silva, 2019, SiOC-based polymer derived-ceramic porous anodes for microbial fuel cells, Biochem. Eng. J., 148, 29, 10.1016/j.bej.2019.04.004 Zhang, 2015, COD removal characteristics in air-cathode microbial fuel cells, Bioresour. Technol., 176, 23, 10.1016/j.biortech.2014.11.001 Wang, 2014, Improving electricity generation and substrate removal of a MFC–SBR system through optimization of COD loading distribution, Biochem. Eng. J., 85, 15, 10.1016/j.bej.2014.01.008 Liu, 2017, A three-species microbial consortium for power generation, Energy Environ. Sci., 10, 1600, 10.1039/C6EE03705D Logan, 2007, Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells, Environ. Sci. Technol., 41, 3341, 10.1021/es062644y Zhang, 2016, Microbial electrochemical systems and technologies: it is time to report the capital costs, Environ. Sci. Technol., 50, 5432, 10.1021/acs.est.6b01601 Yang, 2014, Single-step fabrication using a phase inversion method of poly(vinylidene fluoride) (PVDF) activated carbon air cathodes for microbial fuel cells, Environ. Sci. Technol. Lett., 1, 416, 10.1021/ez5002769 Yang, 2015, Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells, Bioresour. Technol., 197, 318, 10.1016/j.biortech.2015.08.119 Zhang, 2016, High‐performance carbon aerogel air cathodes for microbial fuel cells, ChemSusChem, 9, 2788, 10.1002/cssc.201600590 Yang, 2016, Immobilization of a metal–nitrogen–carbon catalyst on activated carbon with enhanced cathode performance in microbial fuel cells, ChemSusChem, 9, 2226, 10.1002/cssc.201600573 Kim, 2015, Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells, Water Res., 80, 41, 10.1016/j.watres.2015.05.021 W.E. Federation, 2005 Vanrolleghem, 1995, Practical identifiability of a biokinetic model of activated sludge respiration, Water Res., 29, 2561, 10.1016/0043-1354(95)00105-T Petersen, 2003, A simplified method to assess structurally identifiable parameters in Monod-based activated sludge models, Water Res., 37, 2893, 10.1016/S0043-1354(03)00114-3 Zhao, 2016, Investigation of multiphysics in tubular microbial fuel cells by coupled computational fluid dynamics with multi-order Butler–Volmer reactions, Chem. Eng. J., 296, 377, 10.1016/j.cej.2016.03.110 Ortiz-Martínez, 2015, Developments in microbial fuel cell modeling, Chem. Eng. J., 271, 50, 10.1016/j.cej.2015.02.076 Oh, 2007, Voltage reversal during microbial fuel cell stack operation, J. Power Sources, 167, 11, 10.1016/j.jpowsour.2007.02.016 Hunt, 2004, Hypothesis for the role of nutrient starvation in biofilm detachment, Appl. Environ. Microbiol., 70, 7418, 10.1128/AEM.70.12.7418-7425.2004 Kato Marcus, 2007, Conduction‐based modeling of the biofilm anode of a microbial fuel cell, Biotechnol. Bioeng., 98, 1171, 10.1002/bit.21533 del Campo, 2014, 175 Katuri, 2011, Microbial fuel cells meet with external resistance, Bioresour. Technol., 102, 2758, 10.1016/j.biortech.2010.10.147 Jung, 2011, Influence of external resistance on electrogenesis, methanogenesis, and anode prokaryotic communities in microbial fuel cells, Appl. Environ. Microbiol., 77, 564, 10.1128/AEM.01392-10 Lean, 2017, Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial, Lancet, 391, 541, 10.1016/S0140-6736(17)33102-1 Liu, 2004, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol., 38, 4040, 10.1021/es0499344 Zhang, 2016, Diffusion layer characteristics for increasing the performance of activated carbon air cathodes in microbial fuel cells, Environ. Sci.: Water Res. Technol., 2, 266 Zhang, 2014, Long‐term performance of chemically and physically modified activated carbons in air cathodes of microbial fuel cells, ChemElectroChem, 1, 1859, 10.1002/celc.201402123 Fan, 2008, Quantification of the internal resistance distribution of microbial fuel cells, Environ. Sci. Technol., 42, 8101, 10.1021/es801229j Linke, 2017, Evaluation of the performance of zero-electrolyte-discharge microbial fuel cell based on the type of substrate, RSC Adv., 7, 4070, 10.1039/C6RA27513C Hutchinson, 2011, Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells, J. Power Sources, 196, 9213, 10.1016/j.jpowsour.2011.07.040 Ou, 2016, Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition, J. Power Sources, 328, 385, 10.1016/j.jpowsour.2016.08.007 Ou, 2016, Multi-variable mathematical models for the air-cathode microbial fuel cell system, J. Power Sources, 314, 49, 10.1016/j.jpowsour.2016.02.064 Logan, 2015, Assessment of microbial fuel cell configurations and power densities, Environ. Sci. Technol. Lett., 2, 206, 10.1021/acs.estlett.5b00180 Holman, 2005, COD, ammonia and dissolved oxygen time profiles in the simultaneous nitrification/denitrification process, Biochem. Eng. J., 22, 125, 10.1016/j.bej.2004.09.001 Li, 2018, Performance and microbial community analysis of bio-electrocoagulation on simultaneous nitrification and denitrification in submerged membrane bioreactor at limited dissolved oxygen, Bioresour. Technol., 258, 168, 10.1016/j.biortech.2018.02.121 Oh, 2009, Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells, Water Sci. Technol., 60, 1311, 10.2166/wst.2009.444 Peck, 2015, Introduction to statistics and data analysis, Cengage Learn., 529 Liu, 2016, Characterizing polycyclic aromatic hydrocarbon build-up processes on urban road surfaces, Environ. Pollut., 214, 185, 10.1016/j.envpol.2016.04.014 Horwitz, 1982, Evaluation of analytical methods used for regulation of foods and drugs, Anal. Chem., 54, 67, 10.1021/ac00238a002 Egodawatta, 2013, Characterising metal build-up on urban road surfaces, Environ. Pollut., 176, 87, 10.1016/j.envpol.2013.01.021 Zhang, 2011, Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances, J. Power Sources, 196, 6029, 10.1016/j.jpowsour.2011.04.013 Kumar, 2017, The ins and outs of microorganism–electrode electron transfer reactions, Nat. Rev. Chem., 1, 1, 10.1038/s41570-017-0024