Understanding the current plummeting phenomenon in microbial fuel cells (MFCs)
Tài liệu tham khảo
Kodali, 2017, Air breathing cathodes for microbial fuel cell using Mn-, Fe-, Co-and Ni-containing platinum group metal-free catalysts, Electrochim. Acta, 231, 115, 10.1016/j.electacta.2017.02.033
Logan, 2006, Microbial fuel cells: methodology and technology, Environ. Sci. Technol., 40, 5181, 10.1021/es0605016
Li, 2020, Characterising and control of ammonia emission in microbial fuel cells, Chem. Eng. J.
Khan, 2020, Investigating microbial fuel cell aided bio-remediation of mixed phenolic contaminants under oxic and anoxic environments, Biochem. Eng. J., 155, 10.1016/j.bej.2019.107485
e Silva, 2019, SiOC-based polymer derived-ceramic porous anodes for microbial fuel cells, Biochem. Eng. J., 148, 29, 10.1016/j.bej.2019.04.004
Zhang, 2015, COD removal characteristics in air-cathode microbial fuel cells, Bioresour. Technol., 176, 23, 10.1016/j.biortech.2014.11.001
Wang, 2014, Improving electricity generation and substrate removal of a MFC–SBR system through optimization of COD loading distribution, Biochem. Eng. J., 85, 15, 10.1016/j.bej.2014.01.008
Liu, 2017, A three-species microbial consortium for power generation, Energy Environ. Sci., 10, 1600, 10.1039/C6EE03705D
Logan, 2007, Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells, Environ. Sci. Technol., 41, 3341, 10.1021/es062644y
Zhang, 2016, Microbial electrochemical systems and technologies: it is time to report the capital costs, Environ. Sci. Technol., 50, 5432, 10.1021/acs.est.6b01601
Yang, 2014, Single-step fabrication using a phase inversion method of poly(vinylidene fluoride) (PVDF) activated carbon air cathodes for microbial fuel cells, Environ. Sci. Technol. Lett., 1, 416, 10.1021/ez5002769
Yang, 2015, Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells, Bioresour. Technol., 197, 318, 10.1016/j.biortech.2015.08.119
Zhang, 2016, High‐performance carbon aerogel air cathodes for microbial fuel cells, ChemSusChem, 9, 2788, 10.1002/cssc.201600590
Yang, 2016, Immobilization of a metal–nitrogen–carbon catalyst on activated carbon with enhanced cathode performance in microbial fuel cells, ChemSusChem, 9, 2226, 10.1002/cssc.201600573
Kim, 2015, Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells, Water Res., 80, 41, 10.1016/j.watres.2015.05.021
W.E. Federation, 2005
Vanrolleghem, 1995, Practical identifiability of a biokinetic model of activated sludge respiration, Water Res., 29, 2561, 10.1016/0043-1354(95)00105-T
Petersen, 2003, A simplified method to assess structurally identifiable parameters in Monod-based activated sludge models, Water Res., 37, 2893, 10.1016/S0043-1354(03)00114-3
Zhao, 2016, Investigation of multiphysics in tubular microbial fuel cells by coupled computational fluid dynamics with multi-order Butler–Volmer reactions, Chem. Eng. J., 296, 377, 10.1016/j.cej.2016.03.110
Ortiz-Martínez, 2015, Developments in microbial fuel cell modeling, Chem. Eng. J., 271, 50, 10.1016/j.cej.2015.02.076
Oh, 2007, Voltage reversal during microbial fuel cell stack operation, J. Power Sources, 167, 11, 10.1016/j.jpowsour.2007.02.016
Hunt, 2004, Hypothesis for the role of nutrient starvation in biofilm detachment, Appl. Environ. Microbiol., 70, 7418, 10.1128/AEM.70.12.7418-7425.2004
Kato Marcus, 2007, Conduction‐based modeling of the biofilm anode of a microbial fuel cell, Biotechnol. Bioeng., 98, 1171, 10.1002/bit.21533
del Campo, 2014, 175
Katuri, 2011, Microbial fuel cells meet with external resistance, Bioresour. Technol., 102, 2758, 10.1016/j.biortech.2010.10.147
Jung, 2011, Influence of external resistance on electrogenesis, methanogenesis, and anode prokaryotic communities in microbial fuel cells, Appl. Environ. Microbiol., 77, 564, 10.1128/AEM.01392-10
Lean, 2017, Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial, Lancet, 391, 541, 10.1016/S0140-6736(17)33102-1
Liu, 2004, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol., 38, 4040, 10.1021/es0499344
Zhang, 2016, Diffusion layer characteristics for increasing the performance of activated carbon air cathodes in microbial fuel cells, Environ. Sci.: Water Res. Technol., 2, 266
Zhang, 2014, Long‐term performance of chemically and physically modified activated carbons in air cathodes of microbial fuel cells, ChemElectroChem, 1, 1859, 10.1002/celc.201402123
Fan, 2008, Quantification of the internal resistance distribution of microbial fuel cells, Environ. Sci. Technol., 42, 8101, 10.1021/es801229j
Linke, 2017, Evaluation of the performance of zero-electrolyte-discharge microbial fuel cell based on the type of substrate, RSC Adv., 7, 4070, 10.1039/C6RA27513C
Hutchinson, 2011, Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells, J. Power Sources, 196, 9213, 10.1016/j.jpowsour.2011.07.040
Ou, 2016, Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition, J. Power Sources, 328, 385, 10.1016/j.jpowsour.2016.08.007
Ou, 2016, Multi-variable mathematical models for the air-cathode microbial fuel cell system, J. Power Sources, 314, 49, 10.1016/j.jpowsour.2016.02.064
Logan, 2015, Assessment of microbial fuel cell configurations and power densities, Environ. Sci. Technol. Lett., 2, 206, 10.1021/acs.estlett.5b00180
Holman, 2005, COD, ammonia and dissolved oxygen time profiles in the simultaneous nitrification/denitrification process, Biochem. Eng. J., 22, 125, 10.1016/j.bej.2004.09.001
Li, 2018, Performance and microbial community analysis of bio-electrocoagulation on simultaneous nitrification and denitrification in submerged membrane bioreactor at limited dissolved oxygen, Bioresour. Technol., 258, 168, 10.1016/j.biortech.2018.02.121
Oh, 2009, Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells, Water Sci. Technol., 60, 1311, 10.2166/wst.2009.444
Peck, 2015, Introduction to statistics and data analysis, Cengage Learn., 529
Liu, 2016, Characterizing polycyclic aromatic hydrocarbon build-up processes on urban road surfaces, Environ. Pollut., 214, 185, 10.1016/j.envpol.2016.04.014
Horwitz, 1982, Evaluation of analytical methods used for regulation of foods and drugs, Anal. Chem., 54, 67, 10.1021/ac00238a002
Egodawatta, 2013, Characterising metal build-up on urban road surfaces, Environ. Pollut., 176, 87, 10.1016/j.envpol.2013.01.021
Zhang, 2011, Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances, J. Power Sources, 196, 6029, 10.1016/j.jpowsour.2011.04.013
Kumar, 2017, The ins and outs of microorganism–electrode electron transfer reactions, Nat. Rev. Chem., 1, 1, 10.1038/s41570-017-0024