Hiểu biết về cấu trúc cộng đồng vi khuẩn liên quan đến vùng r кор của Eichhornia crassipes

Springer Science and Business Media LLC - Tập 51 - Trang 1-13 - 2023
Chandra Kant Singh1, Kushneet Kaur Sodhi2, Dileep Kumar Singh1
1Department of Zoology, University of Delhi, Delhi, India
2Department of Zoology, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, Delhi, India

Tóm tắt

Vi sinh vật cộng đồng thực vật đóng vai trò là giao diện giữa thực vật và môi trường của chúng, giúp duy trì hoạt động của hệ sinh thái, chẳng hạn như bảo vệ chống lại căng thẳng abiotic và biotic cũng như cải thiện khả năng hấp thụ dinh dưỡng. Vùng rễ là một giao diện thiết yếu cho sự tương tác giữa thực vật và vi khuẩn, đóng vai trò quan trọng trong việc loại bỏ cũng như hấp thụ kim loại nặng và kháng sinh từ các địa điểm ô nhiễm. Eichhornia crassipes là một loại cây hứa hẹn chứa cộng đồng vi sinh vật phong phú trong vùng rễ của nó. Sự liên kết của vi sinh vật với thực vật là một con đường quan trọng qua đó con người cũng có thể tiếp xúc với các gen và vi khuẩn kháng kháng sinh. Trong nghiên cứu trước đây của chúng tôi, sự loại bỏ ciprofloxacin đã được tăng cường bởi vi khuẩn thúc đẩy tăng trưởng thực vật Microbacterium sp. WHC1 trong sự hiện diện của tiết rễ E. crassipes. Do đó, vùng V3-V4, vùng siêu biến đổi của gen 16 S rRNA đã được nghiên cứu để đánh giá sự đa dạng vi khuẩn và hồ sơ chức năng của microbiota liên quan đến rễ thực vật. Sử dụng chương trình phần mềm QIIME, dữ liệu 16 S rRNA từ nền tảng Giải trình tự thế hệ tiếp theo (NGS) đã được kiểm tra. Đa dạng alpha bao gồm Chao1, Quan sát Shannon, và chỉ số Simpson cho thấy sự đa dạng vi khuẩn đáng kể cao hơn. Proteobacteria (79%) là ngành phong phú nhất có mặt trong các mẫu rễ, theo sau là Firmicutes (8%) và Cyanobacteria (8%). Sulfuricurvum (36%) là giống phong phú nhất thuộc về họ Helicobacteraceae và loài kujiense trong giống Sulfuricurvum là loài phong phú nhất có mặt trong mẫu rễ. Ngoài ra, các cộng đồng vi khuẩn trên rhizoplane của Eichhornia crassipes chứa các gen cung cấp khả năng kháng beta-lactams, tetracycline, fluoroquinolones và penam. Nghiên cứu metagenomic về vi sinh vật cộng đồng E. crassipes cho thấy rằng các cộng đồng vi khuẩn cấu thành tiết rễ của Eichhornia giúp chúng sống sót trong môi trường ô nhiễm.

Từ khóa

#microbiome thực vật #Eichhornia crassipes #vi khuẩn kháng kháng sinh #điều tra metagenomic #đa dạng vi khuẩn

Tài liệu tham khảo

Amalina F, Abd Razak AS, Krishnan S, Zularisam AW, Nasrullah M (2022) Water hyacinth (Eichhornia crassipes) for organic contaminants removal in water–a review. J Hazard Mater Adv 7:100092 Madikizela LM (2021) Removal of organic pollutants in water using water hyacinth (Eichhornia crassipes). J Environ Manage 295:113153 Samal K, Kar S, Trivedi S (2019) Ecological floating bed (EFB) for decontamination of polluted water bodies: design, mechanism and performance. J Environ Manage 251:109550 Sasmaz M, Topal EIA, Obek E, Sasmaz A (2015) The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and as in gallery water in a mining area in Keban, Turkey. J Environ Manage 163:246–253 Mechora Š, Stibilj V, Germ M (2015) Response of duckweed to various concentrations of selenite. Environ Sci Pollut Res 22:2416–2422 Di Luca GA, Mufarrege MM, Hadad HR, Maine MA (2019) Nitrogen and phosphorus removal and Typha domingensis tolerance in a floating treatment wetland. Sci Total Environ 650:233–240 Manorama Thampatti KC, Beena VI, Meera AV, Ajayan AS (2020) Phytoremediation of metals by aquatic macrophytes. Phytoremediation. https://doi.org/10.1007/978-3-030-00099-8_6 Deng F, Zeng F, Shen Q, Abbas A, Cheng J, Jiang W, Chen ZH (2022) Molecular evolution and functional modification of plant miRNAs with CRISPR. Trends Plant Sci 27(9):890–907 Sodhi KK, Kumar M, Dhaulaniya AS, Balan B, Singh DK (2021) Enhanced ciprofloxacin removal by plant growth-promoting Microbacterium sp. WHC1 in presence of Eichhornia crassipes root exudates. Environ Sustain 4:143–153 Aydin S, Arabacı DN, Shahi A, Fakhri H, Ovez S (2022) Enhanced removal of antibiotics using Eichhornia crassipes root biomass in an aerobic hollow-fiber membrane bioreactor. Biofouling 38(3):223–234 Velpandian T, Halder N, Nath M, Das U, Moksha L, Gowtham L, Batta SP (2018) Un-segregated waste disposal: an alarming threat of antimicrobials in surface and ground water sources in Delhi. Environ Sci Pollut Res 25:29518–29528 Sodhi KK, Kumar M, Balan B, Dhaulaniya AS, Singh DK (2020) Isolation and characterization of amoxicillin-resistant bacteria and amoxicillin-induced alteration in its protein profiling and RNA yield. Arch Microbiol 202:225–232 Olivares-Rieumont S, Lima L, De la Rosa D, Graham DW, Columbie I, Santana JL, Sánchez MJ (2007) Water hyacinths (Eichhornia crassipes) as indicators of heavy metal impact of a large landfill on the Almendares river near Havana, Cuba. Bull Environ Contam Toxicol 79:583–587 Yuan S, Cohen DB, Ravel J, Abdo Z, Forney LJ (2012) Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS ONE 7(3):e33865 Mittal P, Prasoodanan PK, Dhakan V, Kumar DB, Sharma VK (2019) Metagenome of a polluted river reveals a reservoir of metabolic and antibiotic resistance genes. Environ Microbiome 14:1–12 Sodhi KK, Kumar M, Singh DK (2021) Assessing the bacterial diversity and functional profiles of the river Yamuna using Illumina MiSeq sequencing. Arch Microbiol 203:367–375 Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583 Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, Caporaso JG (2018) QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science. Nat Biotechnol 37(8):852–857 Balvočiūtė M, Huson DH (2017) SILVA, RDP, greengenes, NCBI and OTT—how do these taxonomies compare? BMC Genomics 18(2):1–8 Wickham H (2011) ggplot2. Wiley Interdiscip Rev 3(2):180–185 Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a web browser. BMC Bioinformatics 12(1):1–10 Liu D, Xu Z, Fan C, Zhou Y (2021) Development of fire risk visualization tool based on heat map. J Loss Prev Process Ind 71:104505 Thukral AK (2017) A review on measurement of alpha diversity in biology. Agric Res J 54(1):1–10 Willis AD (2019) Rarefaction, alpha diversity, and statistics. Front Microbiol 10:2407 Xiang X, Wang H, Tian W, Wang R, Gong L, Xu Y, Man B (2023) Composition and function of bacterial communities of bryophytes and their underlying sediments in the dajiuhu peatland, central China. J Earth Sci 34(1):133–144 Regueira-Iglesias A, Balsa-Castro C, Blanco-Pintos T, Tomás I (2023) Critical review of 16S rRNA gene sequencing workflow in microbiome studies: from primer selection to advanced data analysis. Mol Oral Microbiol. https://doi.org/10.1111/omi.12434 Ortiz-Estrada ÁM, Gollas-Galván T, Martínez-Córdova LR, Martínez-Porchas M (2019) Predictive functional profiles using metagenomic 16S rRNA data: a novel approach to understanding the microbial ecology of aquaculture systems. Rev Aquac 11(1):234–245 Douglas GM, Beiko RG, Langille MG (2018) Predicting the functional potential of the microbiome from marker genes using PICRUSt. Microbiome Anal. https://doi.org/10.1007/978-1-4939-8728-3_11 Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821 Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Von Mering C, Bork P (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 34(8):2115–2122 Yin Y, Wang J (2021) Predictive functional profiling of microbial communities in fermentative hydrogen production system using PICRUSt. Int J Hydrog Energy 46(5):3716–3725 Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A et al (2020) CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 48(D1):D517–D525 Sodhi KK, Mishra LC, Singh CK, Kumar M (2022) Perspective on the heavy metal pollution and recent remediation strategies. Curr Res Microb Sci. https://doi.org/10.1016/j.crmicr.2022.100166 Sodhi KK, Singh CK (2022) Recent development in the sustainable remediation of antibiotics: a review. Total Environ Res Themes. https://doi.org/10.1016/j.totert.2022.100008 Sodhi KK, Singh CK, Kumar M, Singh DK (2023) Whole-genome sequencing of Alcaligenes sp. strain MMA: insight into the antibiotic and heavy metal resistant genes. Front Pharmacol 14:1144561. https://doi.org/10.3389/fphar.2023.1144561 Bhat SH, Darzi AB, Dar MS, Ganaie MM, Bakhshi SH (2011) Correlation of soil physico-chemical factors with VAM fungi distribution under different agroecological conditions. Int J Pharma Bio Sci 2(2):107 Das A, David AA, Swaroop N, Thomas T, Rao S, Hasan A (2018) Assessment of physico-chemical properties of river bank soil of Yamuna in Allahabad city, Uttar Pradesh. Int J Chem Stud 6(3):2412–2417 Liao K, Wu S, Zhu Q (2016) Can soil pH be used to help explain soil organic carbon stocks? CLEAN–Soil Air Water 44(12):1685–1689 Neina D (2019) The role of soil pH in plant nutrition and soil remediation. Appl Environ Soil Sci 2019:1–9 Fu M, Zheng L (2016) Effects of different forms of nitrogen on rhizosphere microbial community structure of Eichhorniacrassipes (Pontederiaceae). Rev Biol Trop 64(1):213–220 Ávila MP, Oliveira-Junior ES, Reis MP, Hester ER, Diamantino C, Veraart AJ et al (2019) The water hyacinth microbiome: link between carbon turnover and nutrient cycling. Microbial Ecol 78:575–588 Fulekar MH, Fulekar J (2020) Bioremediation technology: hazardous waste management. CRC Press, Florida Kumar A, Devi S, Agrawal H, Singh S, Singh J (2020) Rhizoremediation: a unique plant microbiome association of biodegradation. Plant Microbe Symbiosis. https://doi.org/10.1007/978-3-030-36248-5_11 Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manage 174:14–25 Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504 Irawati W, Parhusip AJN, Sopiah N, Tnunay JA (2017) The role of heavy metals-resistant bacteria acinetobacter sp. in copper phytoremediation using Eichhornia crasippes [(Mart.) solms]. KnE Life Sci. https://doi.org/10.18502/kls.v3i5.995 Kaur P, Singh S, Kumar V, Singh N, Singh J (2018) Effect of rhizobacteria on arsenic uptake by macrophyte Eichhorniacrassipes (Mart.) solms. Int J Phytoremediation 20(2):114–120 Sharma R, Kumar A, Singh N, Sharma K (2021) 16S rRNA gene profiling of rhizospheric microbial community of Eichhorniacrassipes. Mol Biol Rep 48(5):4055–4064 Al-Dabbagh B, Elhaty IA, Elhaw M, Murali C, Al Mansoori A, Awad B, Amin A (2019) Antioxidant and anticancer activities of chamomile (Matricaria recutita L). BMC Res Notes 12(1):1–8 Kong N, Wang Z (2022) Response of plant diversity of urban remnant mountains to surrounding urban spatial morphology: a case study. Urban Ecosyst. https://doi.org/10.1007/s11252-021-01154-y Huang D, Qin X, Peng Z, Liu Y, Gong X, Zeng G, Hu Z (2018) Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: impacts on metal accumulation and antioxidative system of Lolium perenne. Ecotoxicol Environ Safety 153:229–237 Montes-Osuna N, Cernava T, Gómez-Lama Cabanás C, Berg G, Mercado-Blanco J (2022) Identification of volatile organic compounds emitted by two beneficial endophytic pseudomonas strains from olive roots. Plants 11(3):318 Shree P, Singh CK, Sodhi KK, Surya JN, Singh DK (2023) Biofilms: understanding the structure and contribution towards bacterial resistance in antibiotics. Med Microecol. https://doi.org/10.1016/j.medmic.2023.100084 War Nongkhlaw FM, Joshi SR (2014) Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India. Revista De Biología Tropical 62(4):1295–1308 Shahid A, Muzammil S, Aslam B, Ashfaq UA, Hayat S, Bilal M, Khurshid M (2023) Antibiotics and antibiotic-resistant bacteria in the environment: sources and impacts. Degradation of antibiotics and antibiotic-resistant bacteria from various sources. Academic Press, Massachusetts, pp 39–65