Understanding the anatase–rutile phase junction in charge separation and transfer in a TiO2 electrode for photoelectrochemical water splitting

Chemical Science - Tập 7 Số 9 - Trang 6076-6082
Ailong Li1,2,3, Zhiliang Wang1,2,3, Heng Yin1,2,3, Shengyang Wang1,2,3, Pengli Yan1,2,3, Baokun Huang1,3, Xiuli Wang1,3, Rengui Li1,3, Xu Zong1,3, Hongxian Han4,1,3, Can Li4,1,3
1Dalian
2Graduate University of Chinese Academy of Sciences, Beijing 100049, China
3State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian, China
4Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), China

Tóm tắt

The key to phase junctions for efficient charge separation is to consider both the phase alignment and interface structure.

Từ khóa


Tài liệu tham khảo

Chen, 2012, Chem. Soc. Rev., 41, 7909, 10.1039/c2cs35230c

Ma, 2014, Chem. Rev., 114, 9987, 10.1021/cr500008u

Jang, 2012, Catal. Today, 185, 270, 10.1016/j.cattod.2011.07.008

Hong, 2011, Energy Environ. Sci., 4, 1781, 10.1039/c0ee00743a

Chen, 2015, Angew. Chem., Int. Ed., 54, 8498, 10.1002/anie.201502686

Zhang, 2008, Angew. Chem., Int. Ed., 47, 1766, 10.1002/anie.200704788

Wang, 2012, Angew. Chem., Int. Ed., 51, 13089, 10.1002/anie.201207554

Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0

Hurum, 2003, J. Phys. Chem. B, 107, 4545, 10.1021/jp0273934

Ohno, 2003, Appl. Catal., A, 244, 383, 10.1016/S0926-860X(02)00610-5

Scanlon, 2013, Nat. Mater., 12, 798, 10.1038/nmat3697

Kavan, 1996, J. Am. Chem. Soc., 118, 6716, 10.1021/ja954172l

Ong, 2015, J. Phys. Chem. C, 119, 27060, 10.1021/acs.jpcc.5b09272

Park, 2000, J. Phys. Chem. B, 104, 8989, 10.1021/jp994365l

Todinova, 2015, J. Phys. Chem. Lett., 6, 3923, 10.1021/acs.jpclett.5b01696

Lee, 2009, J. Phys. Chem. C, 113, 6878, 10.1021/jp9002017

Choi, 2005, J. Appl. Phys., 98, 033715, 10.1063/1.2001146

Tian, 2005, J. Am. Chem. Soc., 127, 7632, 10.1021/ja042192u

Wang, 2015, J. Phys. Chem. C, 119, 22460, 10.1021/acs.jpcc.5b06347

Wang, 2016, Chem. Sci., 10.1039/c6sc00245e

Kawahara, 2002, Angew. Chem., Int. Ed., 41, 2811, 10.1002/1521-3773(20020802)41:15<2811::AID-ANIE2811>3.0.CO;2-#

Chung, 2009, Thin Solid Films, 518, 1415, 10.1016/j.tsf.2009.09.076

Pfeifer, 2013, J. Phys. Chem. Lett., 4, 4182, 10.1021/jz402165b

Li, 2003, Phys. Chem. Chem. Phys., 5, 5326, 10.1039/b310284j

Zhang, 2006, J. Phys. Chem. B, 110, 927, 10.1021/jp0552473

Frank, 2012, Phys. Chem. Chem. Phys., 14, 14567, 10.1039/c2cp42763j

Ma, 2015, Chin. J. Catal., 36, 1519, 10.1016/S1872-2067(15)60874-9

Oldham, 1964, Solid-State Electron., 7, 153, 10.1016/0038-1101(64)90140-6

Zhao, 2015, Chem. Sci., 6, 3483, 10.1039/C5SC00621J

Xia, 2013, ACS Appl. Mater. Interfaces, 5, 9883, 10.1021/am402983k

Berger, 2007, J. Phys. Chem. C, 111, 9936, 10.1021/jp071438p

Wang, 2015, J. Phys. Chem. C, 119, 10439, 10.1021/acs.jpcc.5b01858

Liu, 2003, J. Phys. Chem. C, 107, 8988, 10.1021/jp034113r

Dotan, 2011, Energy Environ. Sci., 4, 958, 10.1039/C0EE00570C

Yan, 2015, ACS Appl. Mater. Interfaces, 7, 3791, 10.1021/am508738d