Understanding the Role of GPCR Heteroreceptor Complexes in Modulating the Brain Networks in Health and Disease

Dasiel O. Borroto‐Escuela1,2,3, Jens Carlsson4, Patricia Ambrogini1, Manuel Narváez5, Karolina Wydra6, Alexander O. Tarakanov7, Xiang Li2, Carmelo Millón5, Luca Ferraro8, Riccardo Cuppini1, Sergio Tanganelli9, Fang Liu10, Małgorzata Filip6, Zaida Dı́az-Cabiale5, Kjell Fuxé2
1Department of Biomolecular Science, Section of Physiology, University of Urbino, Urbino, Italy
2Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
3Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Yaguajay, Cuba
4Department of Cell and Molecular Biology, Uppsala Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
5Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
6Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
7St. Petersburg Institute for Informatics and Automation, Russian Academy of Sciences, Saint Petersburg, Russia
8Department of Life Sciences and Biotechnology , University of Ferrara, Ferrara, Italy
9Department of Medical Sciences, University of Ferrara, Ferrara, Italy
10Campbell Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agnati, 1983a, Cholecystokinin peptides in vitro modulate the characteristics of the striatal 3H-N-propylnorapomorphine sites, Acta Physiol. Scand., 118, 79, 10.1111/j.1748-1716.1983.tb07244.x

Agnati, 1983b, Neurotensin in vitro markedly reduces the affinity in subcortical limbic 3H-N-propylnorapomorphine binding sites, Acta Physiol. Scand., 119, 459, 10.1111/j.1748-1716.1983.tb07363.x

Agnati, 2010, Understanding wiring and volume transmission, Brain Res. Rev., 64, 137, 10.1016/j.brainresrev.2010.03.003

Albizu, 2011, Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors, Neuropharmacology, 61, 770, 10.1016/j.neuropharm.2011.05.023

Amargós-Bosch, 2004, Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex, Cereb. Cortex, 14, 281, 10.1093/cercor/bhg128

Andén, 1966, Ascending monoamine neurons to the telencephalon and diencephalon, Acta Physiol. Scand., 67, 313, 10.1111/j.1748-1716.1966.tb03318.x

Artigas, 2013, Serotonin receptors involved in antidepressant effects, Pharmacol. Ther., 137, 119, 10.1016/j.pharmthera.2012.09.006

Artigas, 2014, Deep brain stimulation in major depression: plastic changes of 5-hydroxytryptamine neurons, Biol. Psychiatry, 76, 174, 10.1016/j.biopsych.2014.05.008

Artigas, 2015, Developments in the field of antidepressants, where do we go now?, Eur. Neuropsychopharmacol., 25, 657, 10.1016/j.euroneuro.2013.04.013

Bailey, 2008, Decrease of D2 receptor binding but increase in D2-stimulated G-protein activation, dopamine transporter binding and behavioural sensitization in brains of mice treated with a chronic escalating dose ‘binge’ cocaine administration paradigm, Eur. J. Neurosci., 28, 759, 10.1111/j.1460-9568.2008.06369.x

Balu, 2016, The NMDA receptor and schizophrenia: from pathophysiology to treatment, Adv. Pharmacol., 76, 351, 10.1016/bs.apha.2016.01.006

Barnes, 1999, A review of central 5-HT receptors and their function, Neuropharmacology, 38, 1083, 10.1016/s0028-3908(99)00010-6

Bellido, 2002, Increased density of galanin binding sites in the dorsal raphe in a genetic rat model of depression, Neurosci. Lett., 317, 101, 10.1016/s0304-3940(01)02446-6

Borroto-Escuela, 2015a, The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural-glial networks, Philos. Trans. R. Soc. Lond. B Biol. Sci., 370, 20140183, 10.1098/rstb.2014.0183

Borroto-Escuela, 2015b, On the role of the balance of GPCR homo/ heteroreceptor complexes in the brain, J. Adv. Neurosci. Res., 2, 36, 10.15379/2409-3564.2015.02.01.5

Borroto-Escuela, 2015c, Evidence for the existence of FGFR1–5-HT1A heteroreceptor complexes in the midbrain raphe 5-HT system, Biochem. Biophys. Res. Commun., 456, 489, 10.1016/j.bbrc.2014.11.112

Borroto-Escuela, 2015d, Enhancement of the FGFR1 signaling in the FGFR1–5-HT1A heteroreceptor complex in midbrain raphe 5-HT neuron systems. Relevance for neuroplasticity and depression, Biochem. Biophys. Res. Commun., 463, 180, 10.1016/j.bbrc.2015.04.133

Borroto-Escuela, 2015e, Role of D2-like heteroreceptor compelxes in the effects of cocaine, morphine and hallucinogens, Neurophatology of Drug Addictions and Substance Misuse, 93

Borroto-Escuela, 2012a, Muscarinic acetylcholine receptor-interacting proteins (mAChRIPs): targeting the receptorsome, Curr. Drug. Targets, 13, 53, 10.2174/138945012798868506

Borroto-Escuela, 2012b, Fibroblast growth factor receptor 1- 5-hydroxytryptamine 1A heteroreceptor complexes and their enhancement of hippocampal plasticity, Biol. Psychiatry, 71, 84, 10.1016/j.biopsych.2011.09.012

Borroto-Escuela, 2014a, The G protein-coupled receptor heterodimer network (GPCR-HetNet) and its hub components, Int. J. Mol. Sci., 15, 8570, 10.3390/ijms15058570

Borroto-Escuela, 2014b, Preferential activation by galanin 1–15 fragment of the GalR1 protomer of a GalR1-GalR2 heteroreceptor complex, Biochem. Biophys. Res. Commun., 452, 347, 10.1016/j.bbrc.2014.08.061

Borroto-Escuela, 2014c, Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2–5-HT2A heteroreceptor complexes, Biochem. Biophys. Res. Commun., 443, 278, 10.1016/j.bbrc.2013.11.104

Borroto-Escuela, 2013a, Dynamic modulation of FGFR1–5-HT1A heteroreceptor complexes. Agonist treatment enhances participation of FGFR1 and 5-HT1A homodimers and recruitment of β-arrestin2, Biochem. Biophys. Res. Commun., 441, 387, 10.1016/j.bbrc.2013.10.067

Borroto-Escuela, 2013b, Dopamine D2 receptor signaling dynamics of dopamine D2-neurotensin 1 receptor heteromers, Biochem. Biophys. Res. Commun., 435, 140, 10.1016/j.bbrc.2013.04.058

Borroto-Escuela, 2013c, G protein-coupled receptor heterodimerization in the brain, Methods Enzymol., 521, 281, 10.1016/B978-0-12-391862-8.00015-6

Borroto-Escuela, 2016a, In situ proximity ligation assay to study and understand the distribution and balance of GPCR homo- and heteroreceptor complexes in the brain, Receptor and Ion Channel Detection in the Brain, 109, 10.1007/978-1-4939-3064-7_9

Borroto-Escuela, 2016b, FGFR1–5-HT1A heteroreceptor complexes in the hippocampus and midbrain raphe as a novel target for antidepressant drugs, 30th CINP World Congress of Neuropsychopharmacology

Borroto-Escuela, 2016c, FGFR1–5-HT1A heteroreceptor complexes: implications for understanding and treating major depression, Trends Neurosci., 39, 5, 10.1016/j.tins.2015.11.003

Borroto-Escuela, 2016d, Understanding the functional plasticity in neural networks of the basal ganglia in cocaine use disorder: a role for allosteric receptor–receptor interactions in A2A-D2 heteroreceptor complexes, Neural Plast., 2016, 4827268, 10.1155/2016/4827268

Borroto-Escuela, 2010a, A serine point mutation in the adenosine A2AR C-terminal tail reduces receptor heteromerization and allosteric modulation of the dopamine D2R, Biochem. Biophys. Res. Commun., 394, 222, 10.1016/j.bbrc.2010.02.168

Borroto-Escuela, 2010b, Galanin receptor-1 modulates 5-hydroxtryptamine-1A signaling via heterodimerization, Biochem. Biophys. Res. Commun., 393, 767, 10.1016/j.bbrc.2010.02.078

Borroto-Escuela, 2010c, Characterization of the A2AR-D2R interface: focus on the role of the C-terminal tail and the transmembrane helices, Biochem. Biophys. Res. Commun., 402, 801, 10.1016/j.bbrc.2010.10.122

Borroto-Escuela, 2010d, Dopamine D2 and 5-hydroxytryptamine 5-HT2A receptors assemble into functionally interacting heteromers, Biochem. Biophys. Res. Commun., 401, 605, 10.1016/j.bbrc.2010.09.110

Borroto-Escuela, 2010e, Dopamine D2 and D4 receptor heteromerization and its allosteric receptor–receptor interactions, Biochem. Biophys. Res. Commun., 404, 928, 10.1016/j.bbrc.2010.12.083

Borroto-Escuela, 2011, Moonlighting characteristics of G protein-coupled receptors: focus on receptor heteromers and relevance for neurodegeneration, IUBMB Life, 63, 463, 10.1002/iub.473

Branchek, 1998, Molecular biology and pharmacology of galanin receptors, Ann. N Y Acad. Sci., 863, 94, 10.1111/j.1749-6632.1998.tb10687.x

Briand, 2008, Persistent alterations in cognitive function and prefrontal dopamine D2 receptors following extended, but not limited, access to self-administered cocaine, Neuropsychopharmacology, 33, 2969, 10.1038/npp.2008.18

Cabello, 2009, Metabotropic glutamate type 5, dopamine D2 and adenosine A2a receptors form higher-order oligomers in living cells, J. Neurochem., 109, 1497, 10.1111/j.1471-4159.2009.06078.x

Caldwell, 2009, Oxytocin as a natural antipsychotic: a study using oxytocin knockout mice, Mol. Psychiatry, 14, 190, 10.1038/sj.mp.4002150

Carlsson, 1968, The effect of imipramine on central 5-hydroxytryptamine neurons, J. Pharm. Pharmacol., 20, 150, 10.1111/j.2042-7158.1968.tb09706.x

Celada, 2013, Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research, CNS Drugs, 27, 703, 10.1007/s40263-013-0071-0

Celada, 2004, The therapeutic role of 5-HT1A and 5-HT2A receptors in depression, J. Psychiatry Neurosci., 29, 252

Coppen, 1967, The biochemistry of affective disorders, Br. J. Psychiatry, 113, 1237, 10.1192/bjp.113.504.1237

Dahlstroem, 1964, Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol. Scand. Suppl., 232, 1

Daniels, 2005, A bivalent ligand (KDAN-18) containing δ-antagonist and κ-agonist pharmacophores bridges δ2 and κ1 opioid receptor phenotypes, J. Med. Chem., 48, 1713, 10.1021/jm034234f

de Bartolomeis, 2013, Serotonin-glutamate and serotonin-dopamine reciprocal interactions as putative molecular targets for novel antipsychotic treatments: from receptor heterodimers to postsynaptic scaffolding and effector proteins, Psychopharmacology, 225, 1, 10.1007/s00213-012-2921-8

de la Mora, 2016, Signaling in dopamine D2 receptor-Oxytocin receptor heterocomplexes and its relevance for the anxiolytic effects of dopamine and oxytocin interactions in the amygdala of the rat, Biochim. Biophys. Acta, 1862, 2075, 10.1016/j.bbadis.2016.07.004

Di Liberto, 2017, Existence of muscarinic acetylcholine receptor (mAChR) and fibroblast growth factor receptor (FGFR) heteroreceptor complexes and their enhancement of neurite outgrowth in neural hippocampal cultures, Biochim. Biophys. Acta, 1861, 235, 10.1016/j.bbagen.2016.10.026

Dunham, 2009, GPR37 surface expression enhancement via N-terminal truncation or protein-protein interactions, PLoS One, 48, 10286, 10.1021/bi9013775

Edwards, 2007, Addiction-related alterations in D1 and D2 dopamine receptor behavioral responses following chronic cocaine self-administration, Neuropsychopharmacology, 32, 354, 10.1038/sj.npp.1301062

Espinoza, 2011, Functional interaction between trace amine-associated receptor 1 and dopamine D2 receptor, Mol. Pharmacol., 80, 416, 10.1124/mol.111.073304

Feifel, 2012, Oxytocin as a potential therapeutic target for schizophrenia and other neuropsychiatric conditions, Neuropsychopharmacology, 37, 304, 10.1038/npp.2011.184

Feifel, 2010, Adjunctive intranasal oxytocin reduces symptoms in schizophrenia patients, Biol. Psychiatry, 68, 678, 10.1016/j.biopsych.2010.04.039

Ferraro, 2014, Neurotensin NTS1-dopamine D2 receptor–receptor interactions in putative receptor heteromers: relevance for Parkinson’s disease and schizophrenia, Curr. Protein Pept. Sci., 15, 681, 10.2174/1389203715666140901105253

Ferraro, 2012, Striatal NTS1 , dopamine D2 and NMDA receptor regulation of pallidal GABA and glutamate release–a dual-probe microdialysis study in the intranigral 6-hydroxydopamine unilaterally lesioned rat, Eur. J. Neurosci., 35, 207, 10.1111/j.1460-9568.2011.07949.x

Ferraro, 2008, Neurotensin receptors as modulators of glutamatergic transmission, Brain Res. Rev., 58, 365, 10.1016/j.brainresrev.2007.11.001

Ferré, 2002, Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function, Proc. Natl. Acad. Sci. U S A, 99, 11940, 10.1073/pnas.172393799

Filip, 2006, Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine, Brain Res., 1077, 67, 10.1016/j.brainres.2006.01.038

Filip, 2012, The importance of the adenosine A2A receptor-dopamine D2 receptor interaction in drug addiction, Curr. Med. Chem., 19, 317, 10.2174/092986712803414231

Flajolet, 2008, FGF acts as a co-transmitter through adenosine A2A receptor to regulate synaptic plasticity, Nat. Neurosci., 11, 1402, 10.1038/nn.2216

Frankowska, 2013, Effects of cocaine self-administration and extinction on D2 -like and A2A receptor recognition and D2 -like/Gi protein coupling in rat striatum, Addict. Biol., 18, 455, 10.1111/j.1369-1600.2012.00452.x

Fuxe, 1965, Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system, Acta Physiol. Scand. Suppl., 247, 39

Fuxe, 1985, Receptor–receptor interactions in the central nervous system. A new integrative mechanism in synapses, Med. Res. Rev., 5, 441, 10.1002/med.2610050404

Fuxe, 1983, Evidence for the existence of receptor–receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides, J. Neural Transm. Suppl., 18, 165

Fuxe, 2014a, The impact of receptor–receptor interactions in heteroreceptor complexes on brain plasticity, Expert Rev. Neurother., 14, 719, 10.1586/14737175.2014.922878

Fuxe, 2014b, Receptor–receptor interactions in heteroreceptor complexes: a new principle in biology. Focus on their role in learning and memory, Neurosci. Discov., 2, 6, 10.7243/2052-6946-2-6

Fuxe, 2014c, Understanding the role of heteroreceptor complexes in the central nervous system, Curr. Protein Pept. Sci., 15, 647, 10.2174/138920371507140916122738

Fuxe, 2014d, Moonlighting proteins and protein-protein interactions as neurotherapeutic targets in the G protein-coupled receptor field, Neuropsychopharmacology, 39, 131, 10.1038/npp.2013.242

Fuxe, 2014e, Dopamine D2 heteroreceptor complexes and their receptor–receptor interactions in ventral striatum: novel targets for antipsychotic drugs, Prog. Brain Res., 211, 113, 10.1016/B978-0-444-63425-2.00005-2

Fuxe, 2014f, Diversity and bias through receptor–receptor interactions in GPCR heteroreceptor complexes. Focus on examples from dopamine D2 receptor heteromerization, Front. Endocrinol., 5, 71, 10.3389/fendo.2014.00071

Fuxe, 2003, Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease, Neurology, 61, S19, 10.1212/01.WNL.0000095206.44418.5c

Fuxe, 2008a, The basal ganglia-from neuronal systems to molecular networks. Preface, Brain Res. Rev., 58, 247, 10.1016/j.brainresrev.2008.05.002

Fuxe, 2008b, Heterodimers and receptor mosaics of different types of G-protein-coupled receptors, Physiology, 23, 322, 10.1152/physiol.00028.2008

Fuxe, 2008c, Receptor–receptor interactions within receptor mosaics. Impact on neuropsychopharmacology, Brain Res. Rev., 58, 415, 10.1016/j.brainresrev.2007.11.007

Fuxe, 2015, Basimglurant for treatment of major depressive disorder: a novel negative allosteric modulator of metabotropic glutamate receptor 5, Expert Opin. Investig. Drugs, 24, 1247, 10.1517/13543784.2015.1074175

Fuxe, 2016, Heteroreceptor complexes and their allosteric receptor–receptor interactions as a novel biological principle for integration of communication in the cns: targets for drug development, Neuropsychopharmacology, 41, 380, 10.1038/npp.2015.244

Fuxe, 2012a, GPCR heteromers and their allosteric receptor–receptor interactions, Curr. Med. Chem., 19, 356, 10.2174/092986712803414259

Fuxe, 2012b, On the role of volume transmission and receptor–receptor interactions in social behaviour: focus on central catecholamine and oxytocin neurons, Brain Res., 1476, 119, 10.1016/j.brainres.2012.01.062

Fuxe, 2012c, On the existence and function of galanin receptor heteromers in the central nervous system, Front. Endocrinol., 3, 127, 10.3389/fendo.2012.00127

Fuxe, 2009, Evidence for the Existence of Central Monoamine Neurons.

Fuxe, 2007, From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission, Brain Res. Rev., 55, 17, 10.1016/j.brainresrev.2007.02.009

Fuxe, 2010a, The discovery of central monoamine neurons gave volume transmission to the wired brain, Prog. Neurobiol., 90, 82, 10.1016/j.pneurobio.2009.10.012

Fuxe, 2010b, Adenosine-dopamine interactions in the pathophysiology and treatment of CNS disorders, CNS Neurosci. Ther., 16, e18, 10.1111/j.1755-5949.2009.00126.x

Fuxe, 1998, Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia, Brain Res. Rev., 26, 258, 10.1016/s0165-0173(97)00049-0

Fuxe, 2015, Dopamine heteroreceptor complexes as therapeutic targets in Parkinson’s disease, Expert Opin. Ther. Targets, 19, 377, 10.1517/14728222.2014.981529

Fuxe, 1991, Galanin/5-HT interactions in the rat central nervous system. Relevance for depression, Galanin: A New Multifunctional Peptide in the Neuroendocrine System, 221, 10.1007/978-1-349-12664-4_16

Fuxe, 1977, On the mechanism of action of the antidepressant drugs amitriptyline and nortriptyline. Evidence for 5-hydroxytryptamine receptor blocking activity, Neurosci. Lett., 6, 339, 10.1016/0304-3940(77)90095-7

Fuxe, 1967, Localization of 5-hydroxytryptamine uptake in rat brain after intraventricular injection, J. Pharm. Pharmacol., 19, 335, 10.1111/j.2042-7158.1967.tb08097.x

Fuxe, 1988, Galanin selectively modulates 5-hydroxytryptamine 1A receptors in the rat ventral limbic cortex, Neurosci. Lett., 85, 163, 10.1016/0304-3940(88)90448-x

George, 2002, G-protein-coupled receptor oligomerization and its potential for drug discovery, Nat. Rev. Drug Discov., 1, 808, 10.1038/nrd913

Gingrich, 2000, Dopamine D2 receptors in the nucleus accumbens are important for social attachment in female prairie voles (Microtus ochrogaster), Behav. Neurosci., 114, 173, 10.1037/0735-7044.114.1.173

Ginovart, 2010, Dopamine receptors and the treatment of schizophrenia, The Dopamine Receptor, 431, 10.1007/978-1-60327-333-6_16

Gorinski, 2012, Computational and experimental analysis of the transmembrane domain 4/5 dimerization interface of the serotonin 5-HT1A receptor, Mol. Pharmacol., 82, 448, 10.1124/mol.112.079137

Grace, 2017, Dopamine system dysregulation and the pathophysiology of schizophrenia: insights from the methylazoxymethanol acetate model, Biol. Psychiatry, 81, 5, 10.1016/j.biopsych.2015.11.007

Guidolin, 2015, G-protein-coupled receptor type A heteromers as an emerging therapeutic target, Expert Opin. Ther. Targets, 19, 265, 10.1517/14728222.2014.981155

Guo, 2008, Dopamine D2 receptors form higher order oligomers at physiological expression levels, EMBO J., 27, 2293, 10.1038/emboj.2008.153

Gutiérrez-de-Terán, 2017, Structure-based rational design of adenosine receptor ligands, Curr. Top. Med. Chem., 17, 40, 10.2174/1568026616666160719164207

Han, 2009, Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation, Nat. Chem. Biol., 5, 688, 10.1038/nchembio.199

Hayashi, 2007, Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival, Cell, 131, 596, 10.1016/j.cell.2007.08.036

Hedlund, 1994, Galanin-(1–15), but not galanin-(1–29), modulates 5-HT1A receptors in the dorsal hippocampus of the rat brain: possible existence of galanin receptor subtypes, Brain Res., 634, 163, 10.1016/0006-8993(94)90271-2

Hedlund, 1992, Evidence for specific N-terminal galanin fragment binding sites in the rat brain, Eur. J. Pharmacol., 224, 203, 10.1016/0014-2999(92)90806-f

Hillion, 2002, Coaggregation, cointernalization and codesensitization of adenosine A2A receptors and dopamine D2 receptors, J. Biol. Chem., 277, 18091, 10.1074/jbc.M107731200

Holst, 2007, GPR39 signaling is stimulated by zinc ions but not by obestatin, Endocrinology, 148, 13, 10.1210/en.2006-0933

Huber, 2012, Bivalent molecular probes for dopamine D2-like receptors, Bioorg. Med. Chem., 20, 455, 10.1016/j.bmc.2011.10.063

Hübner, 2016, Structure-guided development of heterodimer-selective GPCR ligands, Nat. Commun., 7, 12298, 10.1038/ncomms12298

Insel, 2001, The neurobiology of attachment, Nat. Rev. Neurosci., 2, 129, 10.1038/35053579

Kapur, 2003, Psychosis as a state of aberrant salience: a framework linking biology, phenomenology and pharmacology in schizophrenia, Am. J. Psychiatry, 160, 13, 10.1176/appi.ajp.160.1.13

Kenakin, 2007, Functional selectivity through protean and biased agonism: who steers the ship?, Mol. Pharmacol., 72, 1393, 10.1124/mol.107.040352

Kenakin, 2008, Seven transmembrane receptors as nature’s prototype allosteric protein: de-emphasizing the geography of binding, Mol. Pharmacol., 74, 541, 10.1124/mol.108.050062

Kenakin, 2011, Functional selectivity and biased receptor signaling, J. Pharmacol. Exp. Ther., 336, 296, 10.1124/jpet.110.173948

Kern, 2012, Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism, Neuron, 73, 317, 10.1016/j.neuron.2011.10.038

Koschatzky, 2011, Cross-receptor interactions between dopamine D2L and neurotensin NTS1 receptors modulate binding affinities of dopaminergics, ACS Chem. Neurosci., 2, 308, 10.1021/cn200020y

Kourrich, 2013, Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine, Cell, 152, 236, 10.1016/j.cell.2012.12.004

Le Naour, 2013, Bivalent ligands that target mu opioid (MOP) and cannabinoid1 (CB1) receptors are potent analgesics devoid of tolerance, J. Med. Chem., 56, 5505, 10.1021/jm4005219

Liebmann, 2016, Three-dimensional study of Alzheimer’s disease hallmarks using the idisco clearing method, Cell Rep., 16, 1138, 10.1016/j.celrep.2016.06.060

Liu, 2006, Modulation of D2R-NR2B interactions in response to cocaine, Neuron, 52, 897, 10.1016/j.neuron.2006.10.011

Liu, 2000, Direct protein-protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors, Nature, 403, 274, 10.1038/35002014

Lu, 2008, Phenotypic analysis of GalR2 knockout mice in anxiety- and depression-related behavioral tests, Neuropeptides, 42, 387, 10.1016/j.npep.2008.04.009

Maudsley, 2005, The origins of diversity and specificity in g protein-coupled receptor signaling, J. Pharmacol. Exp. Ther., 314, 485, 10.1124/jpet.105.083121

Maurice, 2009, The pharmacology of sigma-1 receptors, Pharmacol. Ther., 124, 195, 10.1016/j.pharmthera.2009.07.001

McFarland, 2011, Pimavanserin, a 5-HT2A inverse agonist, reverses psychosis-like behaviors in a rodent model of Parkinson’s disease, Behav. Pharmacol., 22, 681, 10.1097/FBP.0b013e32834aff98

Meltzer, 1989, Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values, J. Pharmacol. Exp. Ther., 251, 238

Meltzer, 2010, Pimavanserin, a serotonin2A receptor inverse agonist, for the treatment of parkinson’s disease psychosis, Neuropsychopharmacology, 35, 881, 10.1038/npp.2009.176

Migues, 2016, Blocking synaptic removal of GluA2-containing AMPA receptors prevents the natural forgetting of long-term memories, J. Neurosci., 36, 3481, 10.1523/JNEUROSCI.3333-15.2016

Milosevic, 2017, Cell- and region-specific expression of depression-related protein p11 (S100a10) in the brain, J. Comp. Neurol., 525, 955, 10.1002/cne.24113

Millón, 2016, Galanin (1–15) enhances the antidepressant effects of the 5-HT1A receptor agonist 8-OH-DPAT. Involvement of the raphe-hippocampal 5-HT neuron system, Brain Struct. Funct., 221, 4491, 10.1007/s00429-015-1180-y

Millón, 2014, A role for galanin N-terminal fragment (1–15) in anxiety- and depression-related behaviors in rats, Int. J. Neuropsychopharmacol., 18, 3, 10.1093/ijnp/pyu064

Młyniec, 2013, The role of the GPR39 receptor in zinc deficient-animal model of depression, Behav. Brain Res., 238, 30, 10.1016/j.bbr.2012.10.020

Młyniec, 2015, Study of antidepressant drugs in GPR39 (zinc receptor(-)/(-)) knockout mice, showing no effect of conventional antidepressants, but effectiveness of NMDA antagonists, Behav. Brain Res., 287, 135, 10.1016/j.bbr.2015.03.053

Navarro, 2010, Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated effects of cocaine, Proc. Natl. Acad. Sci. U S A, 107, 18676, 10.1073/pnas.1008911107

Navarro, 2013, Cocaine inhibits dopamine D2 receptor signaling via sigma-1–D2 receptor heteromers, PLoS One, 8, e61245, 10.1371/journal.pone.0061245

Ogren, 1979, Reevaluation of the indoleamine hypothesis of depression. Evidence for a reduction of functional activity of central 5-HT systems by antidepressant drugs, J. Neural Transm., 46, 85, 10.1007/bf01250331

Peroutka, 1979, Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol, Mol. Pharmacol., 16, 687

Pinton, 2015a, Dopamine D2 receptor dynamic and modulation in the D2R-Sigma1R heteroreceptor complexes: role in cocaine actions, European Neuropsychopharmacology, S609

Pinton, 2015b, Evidence for the existence of dopamine D2R and Sigma 1 allosteric receptor–receptor interaction in the rat brain: role in brain plasticity and cocaine action, Springerplus, 4, P37, 10.1186/2193-1801-4-s1-p37

Pintsuk, 2016a, Alterations in ventral and dorsal striatal allosteric A2AR-D2R receptor–receptor interactions after amphetamine challenge: relevance for schizophrenia, Life Sci., 10.1016/j.lfs.2016.10.027

Pintsuk, 2016b, Cocaine self-administration differentially affects allosteric A2A-D2 receptor–receptor interactions in the striatum. Relevance for cocaine use disorder, Pharmacol. Biochem. Behav., 144, 85, 10.1016/j.pbb.2016.03.004

Portoghese, 2001, From models to molecules: opioid receptor dimers, bivalent ligands and selective opioid receptor probes, J. Med. Chem., 44, 2259, 10.1021/jm010158+

Przybyla, 2010, Ligand-induced regulation and localization of cannabinoid CB1 and dopamine D2L receptor heterodimers, J. Pharmacol. Exp. Ther., 332, 710, 10.1124/jpet.109.162701

Renner, 2012, Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking, J. Cell Sci., 125, 2486, 10.1242/jcs.101337

Rimondini, 1997, Adenosine A2A agonists: a potential new type of atypical antipsychotic, Neuropsychopharmacology, 17, 82, 10.1016/S0893-133X(97)00033-X

Rocheville, 2000, Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity, Science, 288, 154, 10.1126/science.288.5463.154

Romero-Fernandez, 2013, Evidence for the existence of dopamine D2-oxytocin receptor heteromers in the ventral and dorsal striatum with facilitatory receptor–receptor interactions, Mol. Psychiatry, 18, 849, 10.1038/mp.2012.103

Romieu, 2002, Involvement of the sigma1 receptor in cocaine-induced conditioned place preference: possible dependence on dopamine uptake blockade, Neuropsychopharmacology, 26, 444, 10.1016/s0893-133X(01)00391-8

Salim, 2002, Oligomerization of G-protein-coupled receptors shown by selective co-immunoprecipitation, J. Biol. Chem., 277, 15482, 10.1074/jbc.M201539200

Scarselli, 2001, D2/D3 dopamine receptor heterodimers exhibit unique functional properties, J. Biol. Chem., 276, 30308, 10.1074/jbc.M102297200

Schintu, 2016, p11 modulates L-DOPA therapeutic effects and dyskinesia via distinct cell types in experimental Parkinsonism, Proc. Natl. Acad. Sci. U S A, 113, 1429, 10.1073/pnas.1524303113

Seeman, 2010, Dopamine D2 receptors as treatment targets in schizophrenia, Clin. Schizophr. Relat. Psychoses, 4, 56, 10.3371/CSRP.4.1.5

Seeman, 2002, Amphetamine-sensitized animals show a marked increase in dopamine D2 high receptors occupied by endogenous dopamine, even in the absence of acute challenges, Synapse, 46, 235, 10.1002/syn.10139

Self, 2010, Dopamine receptor subtypes in reward and relapse, The Dopamine Receptors, 479, 10.1007/978-1-60327-333-6_17

So, 2009, Calcium signaling by dopamine D5 receptor and D5–D2 receptor hetero-oligomers occurs by a mechanism distinct from that for dopamine D1–D2 receptor hetero-oligomers, Mol. Pharmacol., 75, 843, 10.1124/mol.108.051805

Soriano, 2009, Adenosine A2A receptor-antagonist/dopamine D2 receptor-agonist bivalent ligands as pharmacological tools to detect A2A-D2 receptor heteromers, J. Med. Chem., 52, 5590, 10.1021/jm900298c

Su, 2014, A dopamine D2 receptor-DISC1 protein complex may contribute to antipsychotic-like effects, Neuron, 84, 1302, 10.1016/j.neuron.2014.11.007

Svenningsson, 2014, Reductions of p11 and 5-HT1B receptor availability in limbic brain regions in cocaine dependence, Biol. Psychiatry, 76, 763, 10.1016/j.biopsych.2014.08.011

Svenningsson, 2013, p11 and its role in depression and therapeutic responses to antidepressants, Nat. Rev. Neurosci., 14, 673, 10.1038/nrn3564

Tanganelli, 2012, Relevance of dopamine D2/neurotensin NTS1 and NMDA/neurotensin NTS1 receptor interaction in psychiatric and neurodegenerative disorders, Curr. Med. Chem., 19, 304, 10.2174/092986712803414268

Tanganelli, 2004, Striatal plasticity at the network level. Focus on adenosine A2A and D2 interactions in models of Parkinson’s Disease, Parkinsonism Relat. Disord., 10, 273, 10.1016/j.parkreldis.2004.02.015

Tarakanov, 2010, Triplet puzzle: homologies of receptor heteromers, J. Mol. Neurosci., 41, 294, 10.1007/s12031-009-9313-5

Tena-Campos, 2015, The zinc binding receptor GPR39 interacts with 5-HT1A and GalR1 to form dynamic heteroreceptor complexes with signaling diversity, Biochim. Biophys. Acta, 1852, 2585, 10.1016/j.bbadis.2015.09.003

Tena-Campos, 2016, Zinc is involved in depression by modulating G protein-coupled receptor heterodimerization, Mol. Neurobiol., 53, 2003, 10.1007/s12035-015-9153-y

Trifilieff, 2011, Detection of antigen interactions ex vivo, by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum, Biotechniques, 51, 111, 10.2144/000113719

Van Craenenbroeck, 2011, Dopamine D4 receptor oligomerization–contribution to receptor biogenesis, FEBS J., 278, 1333, 10.1111/j.1742-4658.2011.08052.x

Veerakumar, 2014, Antidepressant-like effects of cortical deep brain stimulation coincide with pro-neuroplastic adaptations of serotonin systems, Biol. Psychiatry, 76, 203, 10.1016/j.biopsych.2013.12.009

Verma, 2010, Dopamine D1–D2 receptor Heteromer-mediated calcium release is desensitized by D1 receptor occupancy with or without signal activation: dual functional regulation by G protein-coupled receptor kinase 2, J. Biol. Chem., 285, 35092, 10.1074/jbc.M109.088625

Volkow, 2011, Addiction: beyond dopamine reward circuitry, Proc. Natl. Acad. Sci. U S A, 108, 15037, 10.1073/pnas.1010654108

Von Euler, 1987, Neurotensin reduces the affinity of D-2 dopamine receptors in rat striatal membranes, Acta Physiol. Scand., 131, 625, 10.1111/j.1748-1716.1987.tb08285.x

Waldhoer, 2005, A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers, Proc. Natl. Acad. Sci. U S A, 102, 9050, 10.1073/pnas.0501112102

Wang, 2010, Schizophrenia, amphetamine-induced sensitized state and acute amphetamine exposure all show a common alteration: increased dopamine D2 receptor dimerization, Mol. Brain, 3, 25, 10.1186/1756-6606-3-25

Wieronska, 2016, Metabotropic glutamate receptors as targets for new antipsychotic drugs: historical perspective and critical comparative assessment, Pharmacol. Ther., 157, 10, 10.1016/j.pharmthera.2015.10.007

Winton-Brown, 2014, Dopaminergic basis of salience dysregulation in psychosis, Trends Neurosci., 37, 85, 10.1016/j.tins.2013.11.003

Wirz, 2005, Homodimerization and internalization of galanin type 1 receptor in living CHO cells, Neuropeptides, 39, 535, 10.1016/j.npep.2005.09.001

Wydra, 2015a, On the role of adenosine (A)2A receptors in cocaine-induced reward: a pharmacological and neurochemical analysis in rats, Psychopharmacology, 232, 421, 10.1007/s00213-014-3675-2

Wydra, 2015b, On the role of A(2)A and D(2) receptors in control of cocaine and food-seeking behaviors in rats, Psychopharmacology (Berl), 232, 1767, 10.1007/s00213-014-3818-5

Young, 2004, The neurobiology of pair bonding, Nat. Neurosci., 7, 1048, 10.1038/nn1327

Zhang, 2016, Cross-talk between α7 nAchR and NMDAR revealed by protein profiling, J. Proteomics, 131, 113, 10.1016/j.jprot.2015.10.018

Zoli, 1993, Receptor–receptor interactions as an integrative mechanism in nerve cells, Mol. Neurobiol., 7, 293, 10.1007/BF02769180