Understanding the Mott insulating state in 1T-TaS2 and 1T-TaSe2

Ying Fu1, Zongxiu Wu1, Wenhao Zhang1, Yi Yin1
1Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou, 310027, Zhejiang, China

Tóm tắt

AbstractIn this article, we review the recent progress of the scanning tunneling microscopy studies of 1T-TaS2 and 1T-TaSe2 for bulk single crystals and molecular beam epitaxy monolayer films. We focus on how to understand the Mott insulating state in the whole set of materials, even when the stacking order takes effect. Based on this understanding, we discuss tuning the Mott insulator to a metallic state with different techniques, with Mott physics information revealed from the tuning process. The Kondo physics and quantum spin liquid state of 1T-TaS2 and 1T-TaSe2 are further discussed. This good platform of strong correlation must bring more intriguing phenomenon and physics in the future.

Từ khóa


Tài liệu tham khảo

N. F. Mott, Metal-Insulator Transition. Rev. Mod. Phys. 40:, 677–683 (1968).

M. Imada, A. Fujimori, Y. Tokura, Metal-Insulator Transitions. Rev. Mod. Phys. 70:, 1039 (1998).

P. A. Lee, N. Nagaosa, X. G. Wen, Doping a Mott Insulator: Physics of High Temperature Superconductivity. Rev. Mod. Phys. 78:, 17–85 (2006).

P. Cai, et al., Visualizing the evolution from the Mott insulator to a chargeordered insulator in lightly doped cuprates. Nat. Phys. 12:, 1047–1051 (2016).

M. Q. Ren, S. Z. Wang, S. Han, C. L. Song, X. C. Ma, Q. K. Xue, Tuning the electronic states and superconductivity in alkali fulleride films. AAPPS Bulletin. 32:, 1 (2022).

Y. Cao, et al., Unconventional superconductivity in magic-angle graphene superlattices. Nature. 556:, 43–50 (2018).

Y. Cao, et al., Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature. 556:, 80–84 (2018).

B. Sipos, et al., From Mott State to Superconductivity in 1T-TaS 2. Nat. mater.7:, 960–965 (2008).

Y. Chen, et al., Strong Correlations and Orbital Texture in Single-Layer 1T-TaSe 2. Nat. Phys. 16:, 218–224 (2020).

P. Darancet, A. J. Millis, C. A. Marianetti, Three-Dimensional Metallic and Two-Dimensional Insulating Behavior in Octahedral Tantalum Dichalcogenides. Phys. Rev. B. 90:, 045134 (2014).

T. Ritschel, et al., Orbital Textures and Charge Density Waves in Transition Metal Dichalcogenides. Nat. Phys. 11:, 328–331 (2015).

T. Ritschel, H. Berger, J. Geck, Stacking-Driven Gap Formation in Layered 1T-TaS 2. Phys. Rev. B. 98:, 195134 (2018).

S. H. Lee, J. S. Goh, D. Cho, Origin of the Insulating Phase and First-Order Metal-Insulator Transition in 1T-TaS 2. Phys. Rev. Lett.122:, 106404 (2019).

D. B. Shin, et al., Identification of the Mott Insulating Charge Density Wave State in 1T-TaS 2. Phys. Rev. Lett.126:, 196406 (2021).

C. J. Butler, M. Yoshida, T. Hanaguri, Y. Iwasa, Mottness Versus Unit-Cell Doubling as the Driver of the Insulating State in 1T-TaS 2. Nat. Commun. 11:, 2477 (2020).

J. Lee, K. H. Jin, H. W. Yeom, Distinguishing a Mott Insulator from a Trivial Insulator with Atomic Adsorbates. Phys. Rev. Lett.126:, 196405 (2021).

Y. D. Wang, et al., Band insulator to Mott insulator transition in 1T-TaS2. Nat. Commun. 11:, 4215 (2020).

J. A. Wilson, F. J. Di Salvo, S. Mahajan, Charge-Density Waves and Superlattices in the Metallic Layered Transition Metal Dichalcogenides. Adv. Phys.24:, 117 (1975).

F. J. Di Salvo, J. A. Wilson, B. G. Bagley, J. V. Waszczak, Effects of Doping on Charge-Density Waves in Layer Compounds. Phys. Rev. B. 12:, 2220 (1975).

F. J. Di Salvo, J. E. Graebner, The Low Temperature Electrical Properties of 1T-TaS 2. Solid State Commun. 23:, 825–828 (1977).

P. Tosatti, Fazekas E., Electrical, Structural and Magnetic Properties of Pure and Doped 1T-TaS 2. Philos. Mag. B. 39:, 229 (1979).

N. V. Smith, S. D. Kevan, F. J. DiSalvo, Band Structures of the Layer Compounds 1T-TaS 2 and 1H-TaSe 2 in the Presence of Commensurate Charge-Density Waves. J. Phys. C: Solid State Phys. 18:, 3175 (1985).

J. J. Kim, W. Yamaguchi, T. Hasegawa, K. Kitazawa, Observation of Mott Localization Gap Using Low Temperature Scanning Tunneling Spectroscopy in Commensurate 1T-TaS 2. Phys. Rev. Lett.73:, 2103 (1994).

J. J. Kim, I. Ekvall, H. Olin, Temperature-Dependent Scanning Tunneling Spectroscopy of 1T-TaS 2. Phys. Rev. B. 54:, 2244 (1996).

F Zwick, et al., Spectral Consequences of Broken Phase Coherence in 1T-TaS 2. Phys. Rev. Lett.81:, 1058 (1998).

J. J. Kim, W. Yamaguchi, T. Hasegawa, K. Kitazawa, Site-Specified Tunneling Spectroscopy of Local Sensity of States in the Charge-Density-Wave State of 1T-TaSe 2 at 77 K. Phys. Rev. B. 50:, 4958(R) (1994).

K. Horiba, et al., Charge-Density Wave and Three-Dimensional Fermi Surface in 1T-TaSe 2 Studied by Photoemission Spectroscopy. Phys. Rev. B. 66:, 073106 (2002).

L Perfetti, et al., Spectroscopic Signatures of a Bandwidth-Controlled Mott Transition at the Surface of 1T-TaSe 2. Phys. Rev. Lett.90:, 166401 (2003).

S Colonna, et al., Mott Phase at the Surface of 1T-TaSe 2 Observed by Scanning Tunneling Microscopy. Phys. Rev. Lett.94:, 036405 (2005).

Y Nakata, et al., Selective Fabrication of Mott-Insulating and Metallic Monolaye TaSe 2. ACS Appl. Nano Mater.1:, 1456–1460 (2018).

H. C. Lin, et al., Growth of atomically thick transition metal sulfide films on graphene/6H-SiC(0001) by molecular beam epitaxy. Nano Res.11(9), 4722–4727 (2018).

H. C. Lin, et al., Scanning Tunneling Spectroscopic Study of Monolayer 1T-TaS 2 and 1T-TaSe 2. Nano Res. 13:, 133–137 (2020).

K. T. Lee, P. A. Law, 1T-TaS 2 as a Quantum Spin Liquid. Proc. Natl. Acad. Sci. USA. 114:, 6996–7000 (2017).

H. Murayama, et al., Effect of Quenched Disorder on the Quantum Spin Liquid State of the Triangular-Lattice Antiferromagnet 1T-TaS 2. Phys. Rev. Research. 2:, 013099 (2020).

V. Vaňo, et al., Artificial heavy fermions in a van der Waals heterostructure. Nature. 599:, 582–586 (2021).

W. Ruan, et al., Evidence for quantum spin liquid behaviour in single-layer 1T-TaeS 2 from scanning tunnelling microscopy. Nat. Phys. 17:, 1154–1161 (2021).

P. A. Lee, An End to the Drought of Quantum Spin Liquids. Science. 321:, 1306–1307 (2008).

L. Balents, Spin liquids in frustrated magnets. Nature. 464:, 199–208 (2010).

Y. Zhou, K. Kanoda, T. K. Ng, Quantum spin liquid states. Rev. Mod. Phys.89:, 025003 (2017).

Y. Liu, et al., Superconductivity Induced by Se-Doping in Layered Charge-Density-Wave System 1T-TaS 2−xSex. Appl. Phys. Lett.102:, 192602 (2013).

R. Ang, et al., Superconductivity and Bandwidth-Controlled Mott Metal-Insulator Transition in 1T-TaS 2−xSex. Phys. Rev. B. 88:, 115145 (2013).

R. Ang, et al., Atomistic origin of an ordered superstructure induced superconductivity in layered chalcogenides. Nat. Commun. 6:, 6091 (2015).

S. Qiao, et al., Mottness Collapse in 1T-TaS 2−xSex Transition-Metal Dichalcogenide: an Interplay Between Localized and Itinerant Orbitals. Phys. Rev. X. 7:, 041054 (2017).

L. J. Li, et al., Fe-Doping-Induced Superconductivity in the Charge-Density-Wave System 1T-TaS 2. Europhys. Lett. 97:, 67005 (2012).

R. Ang, et al., Real-Space Coexistence of the Melted Mott State and Superconductivity in Fe-Substituted 1T-TaS 2. Phys. Rev. Lett.109:, 176403 (2012).

Y. Fujisawa, et al., Appearance of a Domain Structure and Its Electronic States in Iron Doped 1T-TaS 2 Observed Using Scanning Tunneling Microscopy and Spectroscopy. J. Phys. Soc. Jpn.86:, 113703 (2017).

E. Lahoud, O. N. Meetei, K. B. Chaska, A. Kanigel, N. Trivedi, Emergence of a Novel Pseudogap Metallic State in a Disordered 2D Mott Insulator. Phys. Rev. Lett.112:, 206402 (2014).

W. H. Zhang, et al., Modulation of electronic state in copper-intercalated 1T-TaS 2. Nano Res. 15(5), 4327–4333 (2022).

W. H. Zhang, et al., Visualizing the evolution from Mott insulator to Anderson insulator in Ti-doped 1T-TaS 2. NPJ Quantum Mater.7:, 8 (2022).

J. J. Gao, et al., Chiral charge density waves induced by Ti-doping in 1T-TaS 2. Appl. Phys. Lett.118:, 213105 (2021).

K. L. Bu, et al., Possible Strain Induced Mott Gap Collapse in 1T-TaS 2. Commun. Phys.2:, 146 (2019).

L. G. Ma, et al., A Metallic Mosaic Phase and the Origin of Mott-Insulating State in 1T-TaS 2. Nat. Commun.7:, 10956 (2016).

D. Cho, et al., Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS 2. Nat. Commun.7:, 10453 (2016).

I. Vaskivskyi, et al., Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS 2. Sci. Adv.1:, e1500168 (2015).

M. J. Hollander, et al., Electrically driven reversible insulator-metal phase transition in 1T-TaS 2. Nano Lett.15:, 1861–1866 (2015).

Y. J. Yu, et al., Gate-Tunable Phase Transitions in Thin Flakes of 1T-TaS 2. Nat. Nanotechnol. 10:, 270–276 (2015).

D. Cho, Y. H. Cho, S. W. Cheong, K. S. Kim, H. W. Yeom, Interplay of electron-electron and electron-phonon interactions in the low-temperature phase of 1T-TaS 2. Phys. Rev. B. 92:, 085132 (2015).

W. H. Zhang, et al., Reconciling the bulk metallic and surface insulating state in 1T-TaS 2. Phys. Rev. B. 105:, 035110 (2022).

Z. X. Wu, et al., Effect of Stacking Order on the Electronic State of 1T-TaS 2. Phys. Rev. B. 105:, 035109 (2022).

Q. R. Yao, J. W. Park, E. Oh, H. W. Yeom, Engineering Domain Wall Electronic States in Strongly Correlated van der Waals Material of 1T-TaS 2. Nano Lett. 21:, 9699–9705 (2021).

F. J. Di Salvo, J Wilson A., J. V. Waszczak, Localization of Conduction Electrons by Fe, Co, and Ni in 1T-TaS 2 and 1T-TaSe 2. Phys. Rev. Lett.36:, 885 (1976).

K. E. Wagner, et al., Tuning the charge density wave and superconductivity in Cu xTaS2. Phys. Rev. B. 78:, 104520 (2008).

S. C. Yan, et al., Influence of Domain Walls in the Incommensurate Charge Density Wave State of Cu Intercalated 1T-TiS 2. Phys. Rev. Lett.118:, 106405 (2017).

C. Ye, et al., Visualizing the atomic-scale electronic structure of the Ca2CuO2Cl2 Mott insulator. Nat. Commun. 4:, 1365 (2013).

L. Y. Gan, et al., Strain tuning of the charge density wave in monolayer and bilayer 1T-TaS 2. Phys. Chem. Chem. Phys.18:, 3080–3085 (2016).

S. Gao, et al., Atomic-scale strain manipulation of a charge density wave. Proc. Natl. Acad. Sci. USA. 115:, 6986–6990 (2018).

S. Xie, et al., Coherent, atomically thintransition-metal dichalcogenide superlattices with engineered strain. Science. 359:, 1131–1136 (2018).

Y. Okada, et al., Ripple-modulated electronic structure of a 3D topological insulator. Nat. Commun. 3:, 1158 (2012).

I. Zeljkovic, et al., Strain engineering Dirac surface states in heteroepitaxial topological crystalline insulator thin films. Nat. Nanotechnol. 10:, 849–853 (2015).

X. Y. Zhu, et al., Realization of a Metallic State in 1T-TaS 2 with Persisting Long-Range Order of a Charge Density Wave. Phys. Rev. Lett.125:, 029902 (2020).

I. Vaskivskyi, et al., Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS 2. Sci. Adv.1:, e1500168 (2015).

I. Vaskivskyi, et al., Fast electronic resistance switching involving hidden charge density wave states. Nat. Commun. 7:, 11442 (2016).

M. J. Hollander, et al., Electrically driven reversible insulator-metal phase transition in 1T-TaS 2. Nano Lett. 15:, 861–1866 (2015).

J. C. Dean, et al., Polaronic Conductivity in the Photoinduced Phase of 1T-TaS 2. Phys. Rev. Lett.106:, 016401 (2011).

M. Yoshida, R. Suzuki, Y. Zhang, M. Nakano, Y. Iwasa, Memristive phase switching in two-dimensional 1T-TaS 2 crystals. Sci. Adv.1:, e1500606 (2015).

D. Svetin, et al., Transitions between photoinduced macroscopic quantum states in 1T-TaS 2 controlled by substrate strain. Appl. Phys. Express. 7:, 103201 (2014).

M. Kratochvilova, et al., The low-temperature highly correlated quantum phase in the charge-density-wave 1T-TaS 2 compound. NPJ Quantum Mater.2:, 42 (2017).

A. Ribak, et al., Tuning the charge density wave and superconductivity in Cu xTaS2. Phys. Rev. B. 96:, 195131 (2017).

M. Klanjsek, et al., A high-temperature quantum spin liquid with polaron spins. Nat. Phys. 13:, 1130–1134 (2017).

M. K. Liu, et al., Monolayer 1T-NbSe 2 as a 2D-correlated magnetic insulator. Sci. Adv.7:, eabi6339 (2021).

C. H. P. Wen, et al., Roles of the Narrow Electronic Band near the Fermi Level in 1T-TaS 2-Related Layered Materials. Phys. Rev. Lett.126:, 256402 (2021).

D. Cho, et al., Correlated electronic states at domain walls of a Mott-charge-density-wave insulator 1T-TaS 2. Nat. Commun. 8:, 392 (2017).

J. W. Park, G. Y. Cho, J. Lee, H. W. Yeom, Emergent honeycomb network of topological excitations in correlated charge density wave. Nat. Commun. 10:, 4038 (2019).

C. J. Butler, M. Yoshida, T. Hanaguri, Y. Iwasa, Doublonlike Excitations and Their Phononic Coupling in a Mott Charge-Density-Wave System. Phys. Rev. X. 11:, 011059 (2021).