Hiểu biết về sự thích nghi chuyển hóa thông qua tiến hóa vi khuẩn trong phòng thí nghiệm và phân tích chuyển đổi - ômics
Tóm tắt
Từ khóa
#thích nghi chuyển hóa #tiến hóa vi khuẩn #phân tích ômics #dữ liệu hình thái #mạng lưới chuyển đổiTài liệu tham khảo
Atsumi S, Wu T-Y, Machado IMP et al (2010) Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol 6:449. https://doi.org/10.1038/msb.2010.98
Bamba T, Lee JW, Matsubara A, Fukusaki E (2012) Metabolic profiling of lipids by supercritical fluid chromatography/mass spectrometry. J Chromatogr A 1250:212–219. https://doi.org/10.1016/j.chroma.2012.05.068
Bennett AF, Dao KM, Lenski RE (1990) Rapid evolution in response to high-temperature selection. Nature 346:79–81. https://doi.org/10.1038/346079a0
Bennett AF, Lenski RE (2007) An experimental test of evolutionary trade-offs during temperature adaptation. Proc Natl Acad Sci U S A 104:8649–8654. https://doi.org/10.1073/pnas.0702117104
Bennett BD, Kimball EH, Gao M et al (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5:593–599. https://doi.org/10.1038/nchembio.186
Bentley DR, Balasubramanian S, Swerdlow HP et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59. https://doi.org/10.1038/nature07517
Conrad TM, Lewis NE, Palsson BØ (2011) Microbial laboratory evolution in the era of genome-scale science. Mol Syst Biol 7:509. https://doi.org/10.1038/msb.2011.42
Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution – principles and applications for biotechnology TL - 12. Microb Cell Factories 12:64. https://doi.org/10.1186/1475-2859-12-64
Dragosits M, Mozhayskiy V, Quinones-Soto S et al (2013) Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli. Mol Syst Biol 9:643. https://doi.org/10.1038/msb.2012.76
Furusawa C, Horinouchi T, Maeda T (2018) Toward prediction and control of antibiotic-resistance evolution. Curr Opin Biotechnol 54:45–49. https://doi.org/10.1016/j.copbio.2018.01.026
Gillings MR, Paulsen IT, Tetu SG (2017) Genomics and the evolution of antibiotic resistance. Ann N Y Acad Sci 1388:92–107. https://doi.org/10.1111/nyas.13268
Greenacre EJ, Brocklehurst TF (2006) The acetic acid tolerance response induces cross-protection to salt stress in Salmonella typhimurium. Int J Food Microbiol 112:62–65. https://doi.org/10.1016/j.ijfoodmicro.2006.05.012
Gunasekera TS, Csonka LN, Paliy O (2008) Genome-wide transcriptional responses of Escherichia coli K-12 to continuous osmotic and heat stresses. J Bacteriol 190:3712–3720. https://doi.org/10.1128/JB.01990-07
Harden MM, He A, Creamer K et al (2015) Acid-adapted strains of Escherichia coli K-12 obtained by experimental evolution. Appl Environ Microbiol 81:1932–1941. https://doi.org/10.1128/AEM.03494-14
Horinouchi T, Maeda T, Kotani H, Furusawa C (2020) Suppression of antibiotic resistance evolution by single-gene deletion. Sci Rep 4178:1–9. https://doi.org/10.1038/s41598-020-60663-6
Horinouchi T, Minamoto T, Suzuki S et al (2014) Development of an automated culture system for laboratory evolution. J Lab Autom 19:478–482. https://doi.org/10.1177/2211068214521417
Horinouchi T, Sakai A, Kotani H et al (2017a) Improvement of isopropanol tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies. J Biotechnol 255:47–56. https://doi.org/10.1016/j.jbiotec.2017.06.408
Horinouchi T, Suzuki S, Kotani H et al (2017b) Prediction of cross-resistance and collateral sensitivity by gene expression profiles and genomic mutations. Sci Rep 7:14009. https://doi.org/10.1038/s41598-017-14335-7
Jiang L, Li S, Hu Y et al (2012) Adaptive evolution for fast growth on glucose and the effects on the regulation of glucose transport system in Clostridium tyrobutyricum. Biotechnol Bioeng 109:708–718. https://doi.org/10.1002/bit.23346
Kishimoto T, Iijima L, Tatsumi M et al (2010) Transition from positive to neutral in mutation fixation along with continuing rising fitness in thermal adaptive evolution. PLoS Genet 6:1–10. https://doi.org/10.1371/journal.pgen.1001164
Lazar V, Pal Singh G, Spohn R et al (2014) Bacterial evolution of antibiotic hypersensitivity. Mol Syst Biol 9:700–700. https://doi.org/10.1038/msb.2013.57
Lee DH, Palsson BO (2010) Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a nonnative carbon source, L-l,2-propanediol. Appl Environ Microbiol 76:4158–4168. https://doi.org/10.1128/AEM.00373-10
Lenski RE (1998) Bacterial evolution and the cost of antibiotic resistance. Int Microbiol 1:265–270. https://doi.org/10.2436/im.v1i4.27
Leroi AM, Bennett AF, Lenski RE (1994) Temperature acclimation and competitive fitness: an experimental test of the beneficial acclimation assumption. Proc Natl Acad Sci U S A 91:1917–1921. https://doi.org/10.1073/pnas.91.5.1917
Levin-Reisman I, Ronin I, Gefen O et al (2017) Antibiotic tolerance facilitates the evolution of resistance. Science 355:826–830. https://doi.org/10.1126/science.aaj2191
Leyer GJ, Johnson EA (1993) Acid adaptation induces cross-protection against environmental stresses in Salmonella typhimurium. Appl Environ Microbiol 59:1842–1847. https://doi.org/10.1128/aem.59.6.1842-1847.1993
Maeda T, Horinouchi T, Sakata N et al (2019) High-throughput identification of the sensitivities of an Escherichia coli ΔrecA mutant strain to various chemical compounds. J Antibiot (Tokyo) 72:566–573. https://doi.org/10.1038/s41429-019-0160-5
Matsumoto M, Matsuzaki F, Oshikawa K et al (2017) A large-scale targeted proteomics assay resource based on an in vitro human proteome. Nat Methods 14:251–258. https://doi.org/10.1038/nmeth.4116
Matsusako T, Toya Y, Yoshikawa K, Shimizu H (2017) Identification of alcohol stress tolerance genes of Synechocystis sp. PCC 6803 using adaptive laboratory evolution. Biotechnol Biofuels 10:307. https://doi.org/10.1186/s13068-017-0996-5
Miura F, Shibata Y, Miura M et al (2019) Highly efficient single-stranded DNA ligation technique improves low-input whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res 47:e85. https://doi.org/10.1093/nar/gkz435
Nagalakshmi U, Wang Z, Waern K et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349. https://doi.org/10.1126/science.1158441
Ozyamak E, De Almeida C, De Moura APS et al (2013) Integrated stress response of Escherichia coli to methylglyoxal: transcriptional readthrough from the nemRA operon enhances protection through increased expression of glyoxalase I. Mol Microbiol 88:936–950. https://doi.org/10.1111/mmi.12234
Reyes LH, Abdelaal AS, Kao KC (2013) Genetic determinants for n-butanol tolerance in evolved Escherichia coli mutants: cross adaptation and antagonistic pleiotropy between n-butanol and other stressors. Appl Environ Microbiol 79:5313–5320. https://doi.org/10.1128/AEM.01703-13
Suzuki S, Horinouchi T, Furusawa C (2014) Prediction of antibiotic resistance by gene expression profiles. Nat Commun 5:5792. https://doi.org/10.1038/ncomms6792
Tokuyama K, Toya Y, Horinouchi T et al (2018) Application of adaptive laboratory evolution to overcome a flux limitation in an Escherichia coli production strain. Biotechnol Bioeng 115:1542–1551. https://doi.org/10.1002/bit.26568
Umeyama T, Ito T (2017) DMS-Seq for in vivo genome-wide mapping of protein-DNA interactions and nucleosome centers. Cell Rep 21:289–300. https://doi.org/10.1016/j.celrep.2017.09.035
Winkler JD, Kao KC (2014) Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics 104:406–411. https://doi.org/10.1016/j.ygeno.2014.09.006
Ying BW, Matsumoto Y, Kitahara K et al (2015) Bacterial transcriptome reorganization in thermal adaptive evolution. BMC Genomics 16:802. https://doi.org/10.1186/s12864-015-1999-x
Yugi K, Kubota H, Hatano A, Kuroda S (2016) Trans-omics: how to reconstruct biochemical networks across multiple ‘omic’ layers. Trends Biotechnol 34:276–290. https://doi.org/10.1016/j.tibtech.2015.12.013
Yugi K, Kuroda S (2018) Metabolism as a signal generator across trans-omic networks at distinct time scales. Curr Opin Syst Biol 8:59–66. https://doi.org/10.1016/j.coisb.2017.12.002
Zampieri M, Enke T, Chubukov V et al (2017) Metabolic constraints on the evolution of antibiotic resistance. Mol Syst Biol 13:917. https://doi.org/10.15252/msb.20167028