Understanding mass transfer through asymmetric membranes during forward osmosis: A historical perspective and critical review on measuring structural parameter with semi-empirical models and characterization approaches

Desalination - Tập 421 - Trang 110-126 - 2017
Seetha S Manickam1, Jeffrey R. McCutcheon1
1Department of Chemical & Biomolecular Engineering, Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, USA

Tài liệu tham khảo

Loeb, 1963, Advances in chemistry series no. 38, 117 Mulder, 1996 Wong, 2012, Impacts of operating conditions and solution chemistry on osmotic membrane structure and performance, Desalination, 287, 340, 10.1016/j.desal.2011.10.013 Petersen, 1993, Composite reverse osmosis and nanofiltration membranes, J. Membr. Sci., 83, 81, 10.1016/0376-7388(93)80014-O Cadotte, 1970, Water transport across ultrathin membranes of mixed cellulose ester and ether derivatives Cadotte, 1971 Cadotte, 1981 Frances, 1966 Rozelle, 1970, Ultrathin cellulose acetate membranes for water desalination Riley, 1972 Hachisuka, 2001 Hirose, 2004 Hirose, 2001 Mickols, 2001 Mickols, 2004 Ghosh, 2009, Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes, J. Membr. Sci., 336, 140, 10.1016/j.memsci.2009.03.024 Ramon, 2012, Transport through composite membrane, part 1: is there an optimal support membrane?, J. Membr. Sci., 415, 298, 10.1016/j.memsci.2012.05.013 Lonsdale, 1971, 101 Singh, 2006, Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions, J. Membr. Sci., 278, 19, 10.1016/j.memsci.2005.10.039 Cath, 2006, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281, 70, 10.1016/j.memsci.2006.05.048 Manickam, 2012, Characterization of polymeric nonwovens using porosimetry, porometry and X-ray computed tomography, J. Membr. Sci., 407, 108, 10.1016/j.memsci.2012.03.022 McCutcheon, 2005, A novel ammonia-carbon dioxide forward (direct) osmosis desalination process, Desalination, 174, 1, 10.1016/j.desal.2004.11.002 Bui, 2015, Proper accounting of mass transfer resistances in forward osmosis: improving the accuracy of model predictions of structural parameter, J. Membr. Sci., 10.1016/j.memsci.2015.02.001 Tiraferri, 2011, Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure, J. Membr. Sci., 367, 340, 10.1016/j.memsci.2010.11.014 Shi, 2011, Effect of substrate structure on the performance of thin-film composite forward osmosis hollow fiber membranes, J. Membr. Sci., 382, 116, 10.1016/j.memsci.2011.07.045 Bui, 2013 Huang, 2015, Impact of support layer pore size on performance of thin film composite membranes for forward osmosis, J. Membr. Sci., 483, 25, 10.1016/j.memsci.2015.01.025 Bird, 1960, 413 Loeb, 1976, Production of energy from concentrated brines by pressure-retarded osmosis: I. Preliminary technical and economic correlations, J. Membr. Sci., 1, 49, 10.1016/S0376-7388(00)82257-7 Achilli, 2010, Pressure retarded osmosis: from the vision of Sidney Loeb to the first prototype installation — review, Desalination, 261, 205, 10.1016/j.desal.2010.06.017 Lee, 1981, Membranes for power generation by pressure-retarded osmosis, J. Membr. Sci., 8, 141, 10.1016/S0376-7388(00)82088-8 Yip, 2010, High performance thin-film composite forward osmosis membrane, Environ. Sci. Technol., 44, 3812, 10.1021/es1002555 Loeb, 1997, Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane, J. Membr. Sci., 129, 243, 10.1016/S0376-7388(96)00354-7 McCutcheon, 2006, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis, J. Membr. Sci., 284, 237, 10.1016/j.memsci.2006.07.049 Achilli, 2009, Power generation with pressure retarded osmosis: an experimental and theoretical investigation, J. Membr. Sci., 343, 42, 10.1016/j.memsci.2009.07.006 Yip, 2011, Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients, Environ. Sci. Technol., 45, 4360, 10.1021/es104325z Tiraferri, 2013, A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes, J. Membr. Sci., 444, 523, 10.1016/j.memsci.2013.05.023 Nagy, 2014, A general, resistance-in-series, salt-and water flux models for forward osmosis and pressure-retarded osmosis for energy generation, J. Membr. Sci., 460, 71, 10.1016/j.memsci.2014.02.021 Phillip, 2010, Reverse draw solute permeation in forward osmosis: modeling and experiments, Environ. Sci. Technol., 44, 5170, 10.1021/es100901n Yong, 2012, Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes, J. Membr. Sci., 392, 9, 10.1016/j.memsci.2011.11.020 Suh, 2012, Modeling reverse draw solute flux in forward osmosis with external concentration polarization in both sides of the draw and feed solution, J. Membr. Sci., 427, 365, 10.1016/j.memsci.2012.08.033 Hancock, 2009, Solute coupled diffusion in osmotically driven membrane processes, Environ. Sci. Technol., 43, 6769, 10.1021/es901132x Lewis, 1908, The osmotic pressure of concentrated solutions, and the laws of the perfect solution, J. Am. Chem. Soc., 30, 668, 10.1021/ja01947a002 Park, 2011, Determination of a constant membrane structure parameter in forward osmosis processes, J. Membr. Sci., 375, 241, 10.1016/j.memsci.2011.03.052 Cath, 2012, Standard methodology for evaluating membrane performance in osmotically driven membrane processes, Desalination, 312, 31, 10.1016/j.desal.2012.07.005 Coday, 2013, Effects of transmembrane hydraulic pressure on performance of forward osmosis membranes, Environ. Sci. Technol., 47, 2386, 10.1021/es304519p Manickam, 2014, Pore structure characterization of asymmetric membranes: non-destructive characterization of porosity and tortuosity, J. Membr. Sci., 454, 549, 10.1016/j.memsci.2013.11.044 Loeb, 1976, Production of energy from concentrated brines by pressure-retarded osmosis: II. Experimental results and projected energy costs, J. Membr. Sci., 1, 249, 10.1016/S0376-7388(00)82271-1 Huang, 2014, Hydrophilic nylon 6, 6 nanofibers supported thin film composite membranes for engineered osmosis, J. Membr. Sci., 457, 162, 10.1016/j.memsci.2014.01.040 Gray, 2006, Internal concentration polarization in forward osmosis: role of membrane orientation, Desalination, 197, 1, 10.1016/j.desal.2006.02.003 Reimer, 1998, vol. 45 Wang, 2012, Microscopic characterization of FO/PRO membranes — a comparative study of CLSM, TEM and SEM, Environ. Sci. Technol., 46, 9995, 10.1021/es301885m Williams, 1996, 3 Minsky, 1961 Isaacs, 1973, The ocean as a power resource, Int. J. Environ. Stud., 4, 201, 10.1080/00207237308709563 Conchello, 2005, Optical sectioning microscopy, Nat. Methods, 2, 920, 10.1038/nmeth815 Bakhshayeshi, 2011, Use of confocal scanning laser microscopy to study virus retention during virus filtration, J. Membr. Sci., 379, 260, 10.1016/j.memsci.2011.05.069 Charcosset, 2000, Comparison of microporous membrane morphologies using confocal scanning laser microscopy, J. Membr. Sci., 168, 53, 10.1016/S0376-7388(99)00299-9 Chenette, 2012, Development of high-productivity, strong cation-exchange adsorbers for protein capture by graft polymerization from membranes with different pore sizes, J. Membr. Sci., 423, 43, 10.1016/j.memsci.2012.07.040 Jackson, 2014, Internal virus polarization model for virus retention by the Ultipor® VF Grade DV20 membrane, Biotechnol. Prog., 30, 856, 10.1002/btpr.1897 Marroquin, 2011, Characterization of asymmetry in microporous membranes by cross-sectional confocal laser scanning microscopy, J. Membr. Sci., 379, 504, 10.1016/j.memsci.2011.06.024 Marroquin, 2014, Location and quantification of biological foulants in a wet membrane structure by cross-sectional confocal laser scanning microscopy, J. Membr. Sci., 453, 282, 10.1016/j.memsci.2013.11.011 Marroquin, 2014, Evaluation of fouling mechanisms in asymmetric microfiltration membranes using advanced imaging, J. Membr. Sci., 465, 1, 10.1016/j.memsci.2014.03.077 Singh, 2008, Surface-initiated atom transfer radical polymerization: a new method for preparation of polymeric membrane adsorbers, J. Membr. Sci., 309, 64, 10.1016/j.memsci.2007.10.007 Wandera, 2012, Modification of ultrafiltration membranes with block copolymer nanolayers for produced water treatment: the roles of polymer chain density and polymerization time on performance, J. Membr. Sci., 403, 250, 10.1016/j.memsci.2012.02.061 Wang, 2008, Detailed analysis of membrane adsorber pore structure and protein binding by advanced microscopy, J. Membr. Sci., 320, 456, 10.1016/j.memsci.2008.04.039 Wickramasinghe, 2006, Characterizing solute binding to macroporous ion exchange membrane adsorbers using confocal laser scanning microscopy, J. Membr. Sci., 281, 609, 10.1016/j.memsci.2006.04.032 Woods, 2014, Effects of a pressure release on virus retention with the Ultipor DV20 membrane, Biotechnol. Bioeng., 111, 545, 10.1002/bit.25112 Herzberg, 2007, Biofouling of reverse osmosis membranes: role of biofilm-enhanced osmotic pressure, J. Membr. Sci., 295, 11, 10.1016/j.memsci.2007.02.024 Smith, 2006, Staining polymers for microscopical examination, Rubber Chem. Technol., 79, 520, 10.5254/1.3547949 Lau, 2009, Non invasive, multiscale 3D X-ray characterization of porous functional composites and membranes, with resolution from mm to sub 50nm, J. Phys. Conf. Ser., 152, 012059, 10.1088/1742-6596/152/1/012059 Amini, 2013, Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes, J. Membr. Sci., 435, 233, 10.1016/j.memsci.2013.01.041 Fang, 2012, Composite forward osmosis hollow fiber membranes: integration of RO-and NF-like selective layers to enhance membrane properties of anti-scaling and anti-internal concentration polarization, J. Membr. Sci., 394, 140, 10.1016/j.memsci.2011.12.034 Lee, 2014, Synthesis and characterization of silica gel-polyacrylonitrile mixed matrix forward osmosis membranes based on layer-by-layer assembly, Sep. Purif. Technol., 124, 207, 10.1016/j.seppur.2014.01.029 Liu, 2013, Fabrication of layer-by-layer assembled FO hollow fiber membranes and their performances using low concentration draw solutions, Desalination, 308, 147, 10.1016/j.desal.2012.07.027 Liu, 2013, Structure design and performance study on homogeneous-reinforced polyvinyl chloride hollow fiber membranes, Desalination, 331, 35, 10.1016/j.desal.2013.10.015 Pardeshi, 2014, Synthesis, characterization and application of novel high flux FO membrane by layer-by-layer self-assembled polyelectrolyte, J. Membr. Sci., 453, 202, 10.1016/j.memsci.2013.11.001 Puguan, 2014, Low internal concentration polarization in forward osmosis membranes with hydrophilic crosslinked PVA nanofibers as porous support layer, Desalination, 336, 24, 10.1016/j.desal.2013.12.031 Qiu, 2011, Synthesis of high flux forward osmosis membranes by chemically crosslinked layer-by-layer polyelectrolytes, J. Membr. Sci., 381, 74, 10.1016/j.memsci.2011.07.013 Saren, 2011, Synthesis and characterization of novel forward osmosis membranes based on layer-by-layer assembly, Environ. Sci. Technol., 45, 5201, 10.1021/es200115w Setiawan, 2011, Fabrication of novel poly (amide-imide) forward osmosis hollow fiber membranes with a positively charged nanofiltration-like selective layer, J. Membr. Sci., 369, 196, 10.1016/j.memsci.2010.11.067 Song, 2011, Nano gives the answer: breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate, Adv. Mater., 23, 3256, 10.1002/adma.201100510 Tian, 2013, Preparation of polyamide thin film composite forward osmosis membranes using electrospun polyvinylidene fluoride (PVDF) nanofibers as substrates, Sep. Purif. Technol., 118, 727, 10.1016/j.seppur.2013.08.021 Wang, 2011 Wang, 2013, Preparation of polyethersulfone/carbon nanotube substrate for high-performance forward osmosis membrane, Desalination, 330, 70, 10.1016/j.desal.2013.09.028 Wei, 2011, Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes, J. Membr. Sci., 372, 292, 10.1016/j.memsci.2011.02.013 Giesche, 2006, Mercury porosimetry: a general (practical) overview, Part. Part. Syst. Charact., 23, 9, 10.1002/ppsc.200601009 Carniglia, 1986, Construction of the tortuosity factor from porosimetry, J. Catal., 102, 401, 10.1016/0021-9517(86)90176-4 2013, Micromeritics Arena, 2014, Solute and water transport in forward osmosis using polydopamine modified thin film composite membranes, Desalination, 343, 8, 10.1016/j.desal.2014.01.009 Arena, 2011, Surface modification of thin film composite membrane support layers with polydopamine: enabling use of reverse osmosis membranes in pressure retarded osmosis, J. Membr. Sci., 375, 55, 10.1016/j.memsci.2011.01.060 Bernstein, 1868, Uber den zeitlichen Verlauf der negativen Schwankung des Nervenstroms, Arch. Gesamte Physiol., 1, 173, 10.1007/BF01640316 Fricke, 1925, The electric resistance and capacity of blood for frequencies between 800 and 4½millioncycles, J. Gen. Physiol., 9, 153, 10.1085/jgp.9.2.153 Höber, 1910, Eine Methode, die elektrische Leitfahigkeit im Innern von Zellen zu messen, Arch. Gesmate Physiol., 133, 237, 10.1007/BF01680330 Overton, 1899, Ueber die allgemeinen osmotischen Eigenschaften der Zelle, ihre vermutlichen Ursachen und ihre Bedeutung fur die Physiologie, Vjschr. Naturforsch. Ges. Zur., 44, 88 Coster, 1992, Characterisation of ultrafiltration membranes by impedance spectroscopy. I. Determination of the separate electrical parameters and porosity of the skin and sublayers, J. Membr. Sci., 66, 19, 10.1016/0376-7388(92)80087-Z Coster, 1996, Impedance spectroscopy of interfaces, membranes and ultrastructures, Bioelectrochem. Bioenerg., 40, 79, 10.1016/0302-4598(96)05064-7 Asaka, 1990, Dielectric properties of cellulose acetate reverse osmosis membranes in aqueous salt solutions, J. Membr. Sci., 50, 71, 10.1016/S0376-7388(00)80887-X Benavente, 2005, Electrochemical impedance spectroscopy as a tool for electrical and structural characterizations of membranes in contact with electrolyte solutions, 463 Cañas, 2001, Characterization of active and porous sublayers of a composite reverse osmosis membrane by impedance spectroscopy, streaming and membrane potentials, salt diffusion and X-ray photoelectron spectroscopy measurements, J. Membr. Sci., 183, 135, 10.1016/S0376-7388(00)00583-4 Cen, 2013, Fouling of reverse osmosis membranes by cane molasses fermentation wastewater: detection by electrical impedance spectroscopy techniques, Desalin. Water Treat., 51, 969, 10.1080/19443994.2012.714657 De Lara, 2009, Use of hydrodynamic and electrical measurements to determine protein fouling mechanisms for microfiltration membranes with different structures and materials, Sep. Purif. Technol., 66, 517, 10.1016/j.seppur.2009.02.003 Kavanagh, 2009, Fouling of reverse osmosis membranes using electrical impedance spectroscopy: measurements and simulations, Desalination, 236, 187, 10.1016/j.desal.2007.10.066 Fontananova, 2014, Probing membrane and interface properties in concentrated electrolyte solutions, J. Membr. Sci., 459, 177, 10.1016/j.memsci.2014.01.057 Li, 2004, Dielectric analysis of nanofiltration membrane in electrolyte solutions: influences of electrolyte concentration and species on membrane permeation, J. Colloid Interface Sci., 276, 68, 10.1016/j.jcis.2004.03.034 Antony, 2013, In situ structural and functional characterization of reverse osmosis membranes using electrical impedance spectroscopy, J. Membr. Sci., 425, 89, 10.1016/j.memsci.2012.09.028 Gao, 2013, Characterization of forward osmosis membranes by electrochemical impedance spectroscopy, Desalination, 312, 45, 10.1016/j.desal.2012.03.006 Yeo, 2014, Characterising nanostructure functionality of a cellulose triacetate forward osmosis membrane using electrical impedance spectroscopy, J. Membr. Sci., 467, 292, 10.1016/j.memsci.2014.05.035 Hutten, 2007 Bernstein, 2013, Membrane characterization Frommer, 1973, Solubility and diffusivity of water and of salts in an aromatic polyamide film, Eur. Polym. J., 9, 367, 10.1016/0014-3057(73)90096-7 Hernandez, 1994, Sorption and transport of water in nylon-6 films, J. Polym. Sci. B Polym. Phys., 32, 2367, 10.1002/polb.1994.090321407 Lim, 1999, Sorption and transport of water vapor in nylon 6, 6 film, J. Appl. Polym. Sci., 71, 197, 10.1002/(SICI)1097-4628(19990110)71:2<197::AID-APP2>3.0.CO;2-J Zhang, 2007, Partitioning of salt ions in FT30 reverse osmosis membranes, Appl. Phys. Lett., 91, 181904, 10.1063/1.2802562 Zhang, 2009, Absorption of water in the active layer of reverse osmosis membranes, J. Membr. Sci., 331, 143, 10.1016/j.memsci.2009.01.027 McCutcheon, 2008, Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes, J. Membr. Sci., 318, 458, 10.1016/j.memsci.2008.03.021