Understanding and Improving Salt Tolerance in Plants

Wiley - Tập 45 Số 2 - Trang 437-448 - 2005
Viswanathan Chinnusamy1, André T. Jagendorf2, Jian‐Kang Zhu3
1Water Technology Centre, Indian Agricultural Research Institute, New Delhi, India
2Department of Plant Biology, Cornell University, Ithaca, NY 14853
3Institute for Integrative Genome Biology Department of Botany and Plant Sciences University of California Riverside California 92521

Tóm tắt

One‐fifth of irrigated agriculture is adversely affected by soil salinity. Hence, developing salt‐tolerant crops is essential for sustaining food production. Progress in breeding for salt‐tolerant crops has been hampered by the lack of understanding of the molecular basis of salt tolerance and lack of availability of genes that confer salt tolerance. Genetic evidence suggests that perception of salt stress leads to a cytosolic calcium‐signal that activates the calcium sensor protein SOS3. SOS3 binds to and activates a ser/thr protein kinase SOS2. The activated SOS2 kinase regulates activities of SOS1, a plasma membrane Na+/H+ antiporter, and NHX1, a tonoplast Na+/H+ antiporter. This results in Na+ efflux and vacuolar compartmentation. A putative osmosensory histidine kinase (AtHK1)‐MAPK cascade probably regulates osmotic homeostasis and ROS scavenging. Osmotic stress and ABA (abscisic acid)‐mediated regulation of LEA (late‐embryogenesis‐abundant)‐type proteins also play important roles in plant salt tolerance. Genetic engineering of ion transporters and their regulators, and of the CBF (C‐repeat‐binding factor) regulons, holds promise for future development of salt‐tolerant crops.

Từ khóa


Tài liệu tham khảo

10.1105/tpc.006130

10.1104/pp.102.003616

10.1093/jexbot/53.372.1331

10.1126/science.285.5431.1256

10.1016/0167‐7799(96)80929‐2

10.1016/S1369‐5266(02)00255‐8

10.1007/978-3-540-39402-0_10

10.1101/gad.1077503

10.1046/j.1365‐313X.2003.01661.x

10.1046/j.1365‐313X.1999.00626.x

10.1071/PP9950875

10.1105/tpc.003483

10.1016/S0167-4781(99)00065-2

10.1016/S0168‐9452(00)00458‐1

10.1046/j.1365‐3040.1997.d01‐146.x

10.1073/pnas.252637799

10.1073/pnas.191389398

10.1104/pp.124.4.1854

10.1080/10715769900301261

10.1046/j.1469‐8137.1997.00825.x

10.1046/j.1365-313x.2000.00723.x

Guo B.H., 2000, Transformation of wheat with a gene encoding for the betaine aldehyde dehydrogenase (BADH), Acta Bot. Sinica, 42, 279

10.2307/3871302

10.1105/tpc.019174

10.1104/pp.006478

10.1073/pnas.040577697

10.1046/j.1365‐313X.1997.12010133.x

10.1104/pp.010188

10.1093/jexbot/51.343.177

10.1104/pp.122.4.1129

10.1104/pp.006783

10.1104/pp.003442

10.1104/pp.122.4.1301

10.1006/bbrc.1998.9796

10.1046/j.1365‐313x.2000.00913.x

10.2307/3871181

10.1104/pp.010548

10.1126/science.280.5360.104

10.1104/pp.007237

10.1093/jxb/erf079

10.1105/tpc.010362

10.1111/j.1365‐3040.1997.00132.x

10.1038/7036

10.1046/j.1365‐3040.2000.00527.x

10.1104/pp.108.4.1387

10.1073/pnas.97.6.2940

10.1104/pp.008532

10.1093/emboj/cdg277

10.1046/j.1365‐313X.2002.01410.x

10.1146/annurev.arplant.49.1.199

10.1126/science.280.5371.1943

10.1073/pnas.060034197

10.2307/3870648

10.1104/pp.127.1.283

Maas E.V., 1990, Agricultural salinity assessment and management. ASCE Manuals and Reports on Engineering No. 71, 262

10.1073/pnas.93.2.765

10.1007/s00122-002-1063-5

10.1073/pnas.252641899

10.1105/tpc.001701

10.1105/tpc.13.11.2513

10.1016/S0014‐5793(99)01451‐9

10.1073/pnas.2034853100

10.1046/j.1365‐313X.2003.01774.x

10.1105/tpc.13.5.1035

10.1038/35021067

Pellegrineschi A., 2002, Progress in the genetic engineering of wheat for waterlimited conditions

10.1023/A:1026542109965

10.1074/jbc.M307982200

10.1073/pnas.122224699

10.1073/pnas.132092099

10.1038/nbt1097‐988

10.1093/pcp/pcd051

10.1126/science.270.5242.1660

10.1073/pnas.241501798

10.1046/j.1365‐3040.2001.00719.x

10.1046/j.1365‐313x.2000.00787.x

10.1023/A:1006095015717

10.1093/jexbot/53.372.1343

10.2307/3870893

10.1104/pp.009993

10.1146/annurev.arplant.52.1.627

10.1046/j.1365‐313X.2002.01359.x

10.1126/science.274.5294.1900

10.1104/pp.115.3.1211

10.1104/pp.117.3.831

10.1023/A:1019859319617

10.1038/nbt766

10.1105/tpc.010371

10.1016/j.febslet.2007.04.032

10.1016/S1369‐5266(00)00067‐4

10.1111/j.1469‐8137.1993.tb03863.x

10.1104/pp.001149

10.1126/science.259.5094.508

10.1016/j.molcel.2004.06.023

10.1111/j.1365‐3040.1995.tb00584.x

10.1146/annurev.arplant.50.1.571

10.1105/tpc.11.7.1195

10.1093/emboj/cdf646

10.1073/pnas.190309197

10.1104/pp.122.4.1249

10.2307/3871051

10.1093/jexbot/53.372.1227

10.1093/oxfordjournals.pcp.a029599

10.1126/science.278.5346.2126

10.1104/pp.103.025395

10.1105/tpc.008714

10.1101/gad.891901

10.1074/jbc.M109275200

10.1105/tpc.13.9.2063

10.1104/pp.110.1.249

10.1111/j.1365‐3040.1996.tb00255.x

10.1046/j.1365‐3040.1999.00418.x

10.2135/cropsci2000.404996x

10.1038/90824

10.1073/pnas.231476498

10.1016/S0168‐9452(98)00175‐7

10.1146/annurev.arplant.53.091401.143329

10.1016/S1369‐5266(03)00085‐2