Uncovering the magnetic response of open-shell graphene nanostructures on metallic surfaces at different doping levels

Science China Physics, Mechanics & Astronomy - Tập 67 - Trang 1-7 - 2024
Zengfu Ou1,2, Jun Wang1,3, Jihai Zhang1,3, Yukang Ding1,2, Shenwei Chen1,3,4, Wenya Zhai1,2, Jingcheng Li1,2, Dingyong Zhong1,3, Donghui Guo1,2
1School of Physics, Sun Yat-Sen University, Guangzhou, China
2Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, China
3State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
4College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China

Tóm tắt

Open-shell graphene nanostructures (GNs) are promising candidates for future spintronics and quantum technologies. Recent progress based on on-surface synthetic approach has successfully created such GNs on metallic surfaces. Meanwhile, the doping effect of metallic surfaces is inevitably present and can significantly tune their electronic and magnetic properties. Here, we investigate the zigzag end states of open-shell 7-armchair graphene nanoribbons (7-AGNRs) on Au(111), Au(100) and Ag(111) surfaces. Combined with the manipulation of a scanning tunneling microscope, we demonstrate that the end states can be tuned from empty states to singly occupied states and to doubly occupied states by substrate doping. Furthermore, the singly occupied states can be finely tuned, with the occupancy number of the states and related magnetic behaviors uncovered by experiments at different temperatures and magnetic fields. Our results provide a comprehensive study of the magnetic response of open-shell GNs on metallic surfaces at different doping levels.

Tài liệu tham khảo

S. Song, J. Su, M. Telychko, J. Li, G. Li, Y. Li, C. Su, J. Wu, and J. Lu, Chem. Soc. Rev. 50, 3238 (2021). H. Wang, H. S. Wang, C. Ma, L. Chen, C. Jiang, C. Chen, X. Xie, A. P. Li, and X. Wang, Nat. Rev. Phys. 3, 791 (2021). D. G. de Oteyza, and T. Frederiksen, J. Phys.-Condens. Matter 34, 443001 (2022). Q. Sun, R. Zhang, J. Qiu, R. Liu, and W. Xu, Adv. Mater. 30, 1705630 (2018). S. Clair, and D. G. de Oteyza, Chem. Rev. 119, 4717 (2019). S. Mishra, X. Yao, Q. Chen, K. Eimre, O. Gröning, R. Ortiz, M. Di Giovannantonio, J. C. Sancho-García, J. Fernández-Rossier, C. A. Pignedoli, K. Müllen, P. Ruffieux, A. Narita, and R. Fasel, Nat. Chem. 13, 581 (2021). J. Li, N. Friedrich, N. Merino, D. G. de Oteyza, D. Peña, D. Jacob, and J. I. Pascual, Nano Lett. 19, 3288 (2019). J. Li, S. Sanz, M. Corso, D. J. Choi, D. Peña, T. Frederiksen, and J. I. Pascual, Nat. Commun. 10, 200 (2019). J. Lawrence, P. Brandimarte, A. Berdonces-Layunta, M. S. G. Mohammed, A. Grewal, C. C. Leon, D. Sánchez-Portal, and D. G. de Oteyza, ACS Nano 14, 4499 (2020). S. Mishra, D. Beyer, R. Berger, J. Liu, O. Gröning, J. I. Urgel, K. Müllen, P. Ruffieux, X. Feng, and R. Fasel, J. Am. Chem. Soc. 142, 1147 (2020). Y. Zhao, K. Jiang, C. Li, Y. Liu, C. Xu, W. Zheng, D. Guan, Y. Li, H. Zheng, C. Liu, W. Luo, J. Jia, X. Zhuang, and S. Wang, J. Am. Chem. Soc. 142, 18532 (2020). D. Jacob, R. Ortiz, and J. Fernández-Rossier, Phys. Rev. B 104, 075404 (2021). S. Mishra, D. Beyer, K. Eimre, S. Kezilebieke, R. Berger, O. Gröning, C. A. Pignedoli, K. Müllen, P. Liljeroth, P. Ruffieux, X. Feng, and R. Fasel, Nat. Nanotechnol. 15, 22 (2020). J. Li, S. Sanz, J. Castro-Esteban, M. Vilas-Varela, N. Friedrich, T. Frederiksen, D. Peña, and J. I. Pascual, Phys. Rev. Lett. 124, 177201 (2020). T. Wang, A. Berdonces-Layunta, N. Friedrich, M. Vilas-Varela, J. P. Calupitan, J. I. Pascual, D. Peña, D. Casanova, M. Corso, and D. G. de Oteyza, J. Am. Chem. Soc. 144, 4522 (2022). S. Mishra, D. Beyer, K. Eimre, J. Liu, R. Berger, O. Gröning, C. A. Pignedoli, K. Müllen, R. Fasel, X. Feng, and P. Ruffieux, J. Am. Chem. Soc. 141, 10621 (2019). J. Su, W. Fan, P. Mutombo, X. Peng, S. Song, M. Ondráček, P. Golub, J. Brabec, L. Veis, M. Telychko, P. Jelínek, J. Wu, and J. Lu, Nano Lett. 21, 861 (2021). K. Biswas, D. Soler, S. Mishra, Q. Chen, X. Yao, A. Sánchez-Grande, K. Eimre, P. Mutombo, C. Martín-Fuentes, K. Lauwaet, J. M. Gallego, P. Ruffieux, C. A. Pignedoli, K. Müllen, R. Miranda, J. I. Urgel, A. Narita, R. Fasel, P. Jelínek, and D. Écija, J. Am. Chem. Soc. 145, 2968 (2023). S. Mishra, G. Catarina, F. Wu, R. Ortiz, D. Jacob, K. Eimre, J. Ma, C. A. Pignedoli, X. Feng, P. Ruffieux, J. Fernández-Rossier, and R. Fasel, Nature 598, 287 (2021). Y. Zhao, K. Jiang, C. Li, Y. Liu, G. Zhu, M. Pizzochero, E. Kaxiras, D. Guan, Y. Li, H. Zheng, C. Liu, J. Jia, M. Qin, X. Zhuang, and S. Wang, Nat. Chem. 15, 53 (2023). K. Biswas, M. Urbani, A. Sánchez-Grande, D. Soler-Polo, K. Lauwaet, A. Matěj, P. Mutombo, L. Veis, J. Brabec, K. Pernal, J. M. Gallego, R. Miranda, D. Écija, P. Jelínek, T. Torres, and J. I. Urgel, J. Am. Chem. Soc. 144, 12725 (2022). J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, Nature 466, 470 (2010). D. G. de Oteyza, A. García-Lekue, M. Vilas-Varela, N. Merino-Díez, E. Carbonell-Sanromà, M. Corso, G. Vasseur, C. Rogero, E. Guitián, J. I. Pascual, J. E. Ortega, Y. Wakayama, and D. Peña, ACS Nano 10, 9000 (2016). M. Koch, F. Ample, C. Joachim, and L. Grill, Nat. Nanotech. 7, 713 (2012). J. van der Lit, M. P. Boneschanscher, D. Vanmaekelbergh, M. Ijäs, A. Uppstu, M. Ervasti, A. Harju, P. Liljeroth, and I. Swart, Nat. Commun. 4, 2023 (2013). T. Cao, F. Zhao, and S. G. Louie, Phys. Rev. Lett. 119, 076401 (2017). A. García-Fuente, D. Carrascal, G. Ross, and J. Ferrer, Phys. Rev. B 107, 115403 (2023). S. Wang, L. Talirz, C. A. Pignedoli, X. Feng, K. Müllen, R. Fasel, and P. Ruffieux, Nat. Commun. 7, 11507 (2016). M. Kolmer, A. K. Steiner, I. Izydorczyk, W. Ko, M. Engelund, M. Szymonski, A. P. Li, and K. Amsharov, Science 369, 571 (2020). K. A. Simonov, A. V. Generalov, A. S. Vinogradov, G. I. Svirskiy, A. A. Cafolla, C. McGuinness, T. Taketsugu, A. Lyalin, N. Mårtensson, and A. B. Preobrajenski, Sci. Rep. 8, 3506 (2018). I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, Rev. Sci. Instrum. 78, 013705 (2007). H. Huang, D. Wei, J. Sun, S. L. Wong, Y. P. Feng, A. H. C. Neto, and A. T. S. Wee, Sci. Rep. 2, 983 (2012). J. Hlzl, and F. K. Schulte, Work Function of Metals (Springer, Berlin, 1979). J. Kondo, Prog. Theor. Phys. 32, 37 (1964). M. Ternes, A. J. Heinrich, and W. D. Schneider, J. Phys.-Condens. Matter 21, 053001 (2009). H. O. Frota, Phys. Rev. B 45, 1096 (1992). H. Prüser, P. E. Dargel, M. Bouhassoune, R. G. Ulbrich, T. Pruschke, S. Lounis, and M. Wenderoth, Nat. Commun. 5, 5417 (2014). T. A. Costi, A. C. Hewson, and V. Zlatic, J. Phys.-Condens. Matter 6, 2519 (1994). H. G. Luo, T. Xiang, X. Q. Wang, Z. B. Su, and L. Yu, Phys. Rev. Lett. 92, 256602 (2004). Z. H. Li, Y. X. Cheng, X. Zheng, J. H. Wei, Y. J. Yan, and H. G. Luo, J. Phys.-Condens. Matter 34, 255601 (2022). K. Nagaoka, T. Jamneala, M. Grobis, and M. F. Crommie, Phys. Rev. Lett. 88, 077205 (2002). P. Wahl, L. Diekhöner, G. Wittich, L. Vitali, M. A. Schneider, and K. Kern, Phys. Rev. Lett. 95, 166601 (2005). L. Limot, J. Kröger, R. Berndt, A. Garcia-Lekue, and W. A. Hofer, Phys. Rev. Lett. 94, 126102 (2005). N. Néel, J. Kröger, L. Limot, K. Palotas, W. A. Hofer, and R. Berndt, Phys. Rev. Lett. 98, 016801 (2007). M. Ternes, C. González, C. P. Lutz, P. Hapala, F. J. Giessibl, P. Jelínek, and A. J. Heinrich, Phys. Rev. Lett. 106, 016802 (2011). S. Kahle, Magnetic Properties of Individual Molecules Studied by Scanning Tunneling Microscopy, Dissertation for the Doctoral Degree (Universität Konstanz, Konstanz, 2013), pp. 94–95. S. Karan, N. Li, Y. Zhang, Y. He, I. P. Hong, H. Song, J. T. Lü, Y. Wang, L. Peng, K. Wu, G. S. Michelitsch, R. J. Maurer, K. Diller, K. Reuter, A. Weismann, and R. Berndt, Phys. Rev. Lett. 116, 027201 (2016). Y. Zhang, S. Kahle, T. Herden, C. Stroh, M. Mayor, U. Schlickum, M. Ternes, P. Wahl, and K. Kern, Nat. Commun. 4, 2110 (2013). T. A. Costi, Phys. Rev. Lett. 85, 1504 (2000).