Uncoupling nanoparticle geometry from material properties for improved hole injection at submonolayer nanoparticle electrode interlayers in organic hole-only devices

Seung Il Lee1,2,3, Muhammad Munir1,3, Ramis Arbi1,3, Pedro Oliveira1, Seok Je Lee4, Jong Hyun Lim5, Woo Young Kim4,2, Ayse Turak1,2,3
1Department of Engineering Physics, McMaster University, Hamilton, Canada
2Functional Materials Research Consortium, McMaster University, Hamilton, Canada
3Department of Physics, Centre for NanoScience Research, Concordia University, Montreal, Canada
4Department of Electronic Display Engineering, Hoseo University, Asan, South Korea
5A-PRO Co. Ltd, Gunpo, South Korea

Tóm tắt

We demonstrate enhanced hole injection into organic hole transport layers (HTL) from submonolayer NiOx, SnOx, and LiF nanoparticle hole injection layers (HIL) produced using reverse micelle templating. Decoration of ITO with nanoparticle HIL shifts the hole barrier height at the interface by modifying the electrical structure of the interfacial surface even though the submonolayers show different coverage rates with different sizes and spacing. The current density–voltage characteristics of hole-only devices using nanoparticles are higher than a non-decorated ITO anode, corresponding to the dynamic barrier height shift. Using reverse micelle templating allows the uncoupling of the effect of a non-uniform electric field from nanoscale objects from the impact of the material properties. Larger nanoparticles with greater coverage show less effective injection than smaller particles with low coverage. Using this assessment, a single monolayer of LiF with particles $$\sim$$ 6 nm, and 21.5% coverage shows the highest hole injection for a single layer of particles, but NiO as a material has greater capacity for hole injection per volume of material on the surface, as particles of $$\sim$$ 8 nm with only 5.6% coverage can still act to improve charge injection. As this optimal performance is highly dependent on the organic layer and the nature of the contact with respect to trap states, tuning the size and density of the nanoparticle arrays seems to be an effective route to optimizing HILs for novel organic materials in next generation devices.

Tài liệu tham khảo

A.K. Chauhan, P. Jha, D.K. Aswal, J.V. Yakhmi, Organic devices: fabrication, applications, and challenges. J. Electron. Mater. 51(2), 447–485 (2022). https://doi.org/10.1007/s11664-021-09338-0 B. Geffroy, P. le Roy, C. Prat, Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int. 55(6), 572–582 (2006). https://doi.org/10.1002/pi.1974 E.K. Lee, M.Y. Lee, C.H. Park, H.R. Lee, J.H. Oh, Toward environmentally robust organic electronics: approaches and applications. Adv. Mater. 29(44), 1703638 (2017). https://doi.org/10.1002/adma.201703638 C.-H. Yeh, K.S.-H. Lo, W. Lin, Visual-attention-based pixel dimming technique for OLED displays of mobile devices. IEEE Trans. Ind. Electron. 66(9), 7159–7167 (2019). https://doi.org/10.1109/TIE.2018.2874582 H.S. Ryu, S.Y. Park, T.H. Lee, J.Y. Kim, H.Y. Woo, Recent progress in indoor organic photovoltaics. Nanoscale 12(10), 5792–5804 (2020). https://doi.org/10.1039/D0NR00816H Y. Wang, J. Zhang, S. Zhang, J. Huang, OFET chemical sensors: chemical sensors based on ultrathin organic field-effect transistors. Polym. Int. 70(4), 414–425 (2021). https://doi.org/10.1002/pi.6095 A. Turak, On the role of LiF in organic optoelectronics. Electron. Mater. 2(2), 198–221 (2021). https://doi.org/10.3390/electronicmat2020016 S.A. Choulis, V.-E. Choong, A. Patwardhan, M.K. Mathai, F. So, Interface modification to improve hole-injection properties in organic electronic devices. Adv. Funct. Mater. 16(8), 1075–1080 (2006). https://doi.org/10.1002/adfm.200500443 N.B. Kotadiya, H. Lu, A. Mondal, Y. Ie, D. Andrienko, P.W.M. Blom, G.-J.A.H. Wetzelaer, Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies. Nature Mater. 17(4), 329–334 (2018). https://doi.org/10.1038/s41563-018-0022-8 Y.-H. Tak, K.-B. Kim, H.-G. Park, K.-H. Lee, J.-R. Lee, Criteria for ITO (indium-tin-oxide) thin film as the bottom electrode of an organic light emitting diode. Thin Solid Films 411(1), 12–16 (2002). https://doi.org/10.1016/S0040-6090(02)00165-7 K.-B. Kim, Y.-H. Tak, Y.-S. Han, K.-H. Baik, M.-H. Yoon, M.-H. Lee, K. Ki-Beom, T. Yoon-Heung, H. Yoon-Soo, B. Kwang-Heum, Y. Myung-Hee, L. Moon-Ho, Relationship between surface roughness of indium tin oxide and leakage current of organic light-emitting diode. Jpn. J. Appl. Phys. 42(4B), L438–L440 (2003). https://doi.org/10.1143/jjap.42.l438 S.I. Lee, K. Liang, L.S. Hui, R. Arbi, M. Munir, S.J. Lee, J.W. Kim, K.J. Kim, W.Y. Kim, A. Turak, Necessity of submonolayer LiF anode interlayers for improved device performance in blue phosphorescent OLEDs. J. Mater. Sci.: Mater. Electron. 32(1), 1161–1177 (2021). https://doi.org/10.1007/s10854-020-04889-0 A. Turak, T. Aytun, C.W. Ow-Yang, Solution processed LiF anode modification for polymer solar cells. Appl. Phys. Lett. 100(25), 253303 (2012). https://doi.org/10.1063/1.4729932 T. Aytun, A. Turak, I. Baikie, G. Halek, C.W. Ow-Yang, Solution-processed LiF for work function tuning in electrode bilayers. Nano Lett. 12(1), 39–44 (2012). https://doi.org/10.1021/nl202838a H. Kurt, J. Jia, Y. Shigesato, C.W. Ow-Yang, Tuning hole charge collection efficiency in polymer photovoltaics by optimizing the work function of indium tin oxide electrodes with solution-processed LiF nanoparticles. J. Mater. Sci. Mater. Electron. 26(11), 9205–9212 (2015). https://doi.org/10.1007/s10854-015-3613-z S.I. Lee, G.J. Yun, J.W. Kim, G. Hanta, K. Liang, L. Kojvic, L.S. Hui, A. Turak, W.Y. Kim, Improved hole injection for blue phosphorescent organic light-emitting diodes using solution deposited tin oxide nano-particles decorated ITO anodes. Sci. Rep. 9(1), 2411 (2019). https://doi.org/10.1038/s41598-019-39451-4 H. Lee, C.-M. Kang, M. Park, J. Kwak, C. Lee, Improved efficiency of inverted organic light-emitting diodes using tin dioxide nanoparticles as an electron injection layer. ACS Appl. Mater. Interfaces 5(6), 1977–1981 (2013). https://doi.org/10.1021/am302787y S. Bhaumik, A.J. Pal, Light-emitting diodes based on solution-processed nontoxic quantum dots: oxides as carrier-transport layers and introducing molybdenum oxide nanoparticles as a hole-inject layer. ACS Appl. Mater. Interfaces 6(14), 11348–11356 (2014). https://doi.org/10.1021/am501890m J. Meyer, R. Khalandovsky, P. Görrn, A. Kahn, MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics. Adv. Mater. 23(1), 70–3 (2011). https://doi.org/10.1002/adma.201003065. arXiv:2097.6830 X. Yang, E. Mutlugun, Y. Zhao, Y. Gao, K.S. Leck, Y. Ma, L. Ke, S.T. Tan, H.V. Demir, X.W. Sun, Solution Processed Tungsten Oxide Interfacial Layer for Efficient Hole-Injection in Quantum Dot Light-Emitting Diodes. Small 10(2), 247–252 (2014). https://doi.org/10.1002/smll.201301199 J. Lee, H. Kim, K. Han, Y. Lee, M. Choi, C. Kim, Controlled enhancement in hole injection at gold-nanoparticle-on-organic electrical contacts fabricated by spark-discharge aerosol technique. ACS Appl. Mater. Interfaces 11(6), 6276–6282 (2019). https://doi.org/10.1021/acsami.8b16303 H. Sung, J. Lee, K. Han, J.-K. Lee, J. Sung, D. Kim, M. Choi, C. Kim, Controlled positioning of metal nanoparticles in an organic light-emitting device for enhanced quantum efficiency. Org. Electron. 15(2), 491–499 (2014). https://doi.org/10.1016/j.orgel.2013.11.038 S.K. Abkenar, A. Tufani, G.O. Ince, H. Kurt, A. Turak, C.W. Ow-Yang, Transfer printing gold nanoparticle arrays by tuning the surface hydrophilicity of thermo-responsive poly N-isopropylacrylamide (pNIPAAm). Nanoscale 9(9), 2969–2973 (2017). https://doi.org/10.1039/C6NR09396E X. Wu, L. Liu, W.C.H. Choy, T. Yu, P. Cai, Y. Gu, Z. Xie, Y. Zhang, L. Du, Y. Mo, S. Xu, Y. Ma, Substantial performance improvement in inverted polymer light-emitting diodes via surface plasmon resonance induced electrode quenching control. ACS Appl. Mater. Interfaces 6(14), 11001–11006 (2014). https://doi.org/10.1021/am5033764 F.C. Krebs, Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes. Sol. Energy Mater. Sol. Cells 92(7), 715–726 (2008). https://doi.org/10.1016/j.solmat.2008.01.013 M. Jung, D. Mo Yoon, M. Kim, C. Kim, T. Lee, J. Hun Kim, S. Lee, S.-H. Lim, D. Woo, Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode. Appl. Phys. Lett. 105(1), 013306 (2014). https://doi.org/10.1063/1.4890135 J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kim, J.-W. Kang, J.-J. Kim, M.-S. Yi, Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes. Appl. Phys. Lett. 90(16), 163516 (2007). https://doi.org/10.1063/1.2719153 N.C. Lindquist, Wa. Luhman, S.-H. Oh, R.J. Holmes, Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. Appl. Phys. Lett. 93(12), 123308 (2008). https://doi.org/10.1063/1.2988287 Y. Gong, S. Zhang, H. Gao, Z. Ma, S. Hu, Z. Tan, Recent advances and comprehensive insights on nickel oxide in emerging optoelectronic devices. Sustain. Energy Fuels 4(9), 4415–4458 (2020). https://doi.org/10.1039/D0SE00621A A. Turak, Reverse micelles as a universal route to solution processed nanoparticles for optical, optoelectronic and photonic applications: a story of salt complexation, micellar stability, and nanoparticle spatial distribution. Vid. Proc. Adv. Mater. 2, 2103166 (2021). https://doi.org/10.5185/vpoam.2021.03166 M. Munir, R. Arbi, P. Oliveria, L. Shu Hui, M. Bumstead, G. Hanta, K. Liang, A. Ibrahim, H. Yu, A. Turak, Photonics made to order: Reverse micelle templating as a universal approach to functional nanoparticles, in 2021 Photonics North PN. (IEEE, Toronto, 2021), p.9597948. https://doi.org/10.1109/PN52152.20219597948 G. Kästle, H.-G. Boyen, F. Weigl, G. Lengl, T. Herzog, P. Ziemann, S. Riethmüller, O. Mayer, C. Hartmann, J. Spatz, M. Möller, M. Ozawa, F. Banhart, M. Garnier, P. Oelhafen, Micellar nanoreactors-preparation and characterization of hexagonally ordered arrays of metallic nanodots. Adv. Funct. Mater. 13(11), 853–861 (2003). https://doi.org/10.1002/adfm.200304332 L. Qi, Synthesis of inorganic nanostructures in reverse micelles, in Encyclopedia of Surface and Colloid Science, 2nd edn., ed. by P. Somasundaran, A. Hubbard (Taylor & Francis, London, 2006), pp.6183–6207 M. Bumstead, K. Liang, G. Hanta, L.S. Hui, A. Turak, disLocate: tools to rapidly quantify local intermolecular structure to assess two-dimensional order in self-assembled systems. Sci. Rep. 8(1), 1554 (2018). https://doi.org/10.1038/s41598-017-18894-7 Y. Sato, T. Ashida, N. Oka, Y. Shigesato, Carrier density dependence of optical band gap and work function in Sn-doped In2O3 films. Appl. Phys. Express 3(6), 061101 (2010). https://doi.org/10.1143/APEX.3.061101 D. Briggs, Handbook X-ray and ultraviolet photoelectron spectroscopy (Heyden & Son Ltd, London, UK, 1977) J. Cazaux, Mechanisms of charging in electron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 105(2), 155–185 (1999). https://doi.org/10.1016/S0368-2048(99)00068-7 V. Kumar, V. Kumar, S. Som, J.H. Neethling, E. Olivier, O.M. Ntwaeaborwa, H.C. Swart, The role of surface and deep-level defects on the emission of tin oxide quantum dots. Nanotechnology 25(13), 135701 (2014). https://doi.org/10.1088/0957-4484/25/13/135701 S. Peters, S. Peredkov, M. Neeb, W. Eberhardt, M. Al-Hada, Size-dependent XPS spectra of small supported Au-clusters. Surf. Sci. 608, 129–134 (2013). https://doi.org/10.1016/j.susc.2012.09.024 Y.D. Wang, C.L. Ma, H.D. Li, S. Zhang, Synthesis and characterization of the composite of SnO2 nanoparticles coated on SiO2 microspheres. Mater. Chem. Phys. 107(2), 248–253 (2008). https://doi.org/10.1016/j.matchemphys.2007.07.006 A.I. Kovalev, D.L. Wainstein, A.Y. Rashkovskiy, A. Osherov, Y. Golan, Size shift of XPS lines observed from PbS nanocrystals. Surf. Interface Anal. 42, 850–854 (2010). https://doi.org/10.1002/sia.3243 B. Balamurugan, T. Maruyama, Inhomogeneous effect of particle size on core-level and valence-band electrons: size-dependent electronic structure of Cu3N nanoparticles. Appl. Phys. Lett. 89(3), 033112 (2006). https://doi.org/10.1063/1.2227632 C.Q. Sun, Surface and nanosolid core-level shift: impact of atomic coordination-number imperfection. Phys. Rev. B 69, 045105 (2004). https://doi.org/10.1103/PhysRevB.69.045105 M. Fondell, M. Gorgoi, M. Boman, A. Lindblad, An HAXPES study of Sn, SnS, SnO and SnO2. J. Electron Spectrosc. Relat. Phenom. 195, 195–199 (2014). https://doi.org/10.1016/j.elspec.2014.07.012 J.-M. Themlin, M. Chtaïb, L. Henrard, P. Lambin, J. Darville, J.-M. Gilles, Characterization of tin oxides by x-ray-photoemission spectroscopy. Phys. Rev. B 46(4), 2460 (1992). https://doi.org/10.1103/PhysRevB.46.2460 L. Kövér, Zs. Kovács, R. Sanjinés, G. Moretti, I. Cserny, G. Margaritondo, J. álinkás, H. Adachi, Electronic structure of tin oxides: high-resolution study of XPS and Auger spectra. Surface Interface Anal. 23(7–8), 461–466 (1995). https://doi.org/10.1002/sia.740230705 J.M. Themlin, R. Sporken, J. Darville, R. Caudano, J.M. Gilles, R.L. Johnson, Resonant-photoemission study of SnO2: cationic origin of the defect band-gap states. Phys. Rev. B 42(18), 11914–11925 (1990). https://doi.org/10.1103/PhysRevB.42.11914 A.N. Mansour, Characterization of NiO by XPS. Surf. Sci. Spectra 3(3), 231–238 (1994). https://doi.org/10.1116/1.1247751 M.F. Al-Kuhaili, S.H.A. Ahmad, S.M.A. Durrani, M.M. Faiz, A. Ul-Hamid, Application of nickel oxide thin films in NiO/Ag multilayer energy-efficient coatings. Mater. Sci. Semicond. Process. 39, 84–89 (2015). https://doi.org/10.1016/j.mssp.2015.04.049 P. Salunkhe, M.A. AV, D. Kekuda, Investigation on tailoring physical properties of nickel oxide thin films grown by dc magnetron sputtering. Mater. Res. Express 7(1), 016427 (2020). https://doi.org/10.1088/2053-1591/ab69c5 A.N. Mansour, C.A. Melendres, Characterization of electrochemically prepared \(\gamma\)-NiOOH by XPS. Surf. Sci. Spectra 3(3), 271–278 (1994). https://doi.org/10.1116/1.1247756 S. Nandy, B. Saha, M.K. Mitra, K.K. Chattopadhyay, Effect of oxygen partial pressure on the electrical and optical properties of highly (200) oriented p-type Ni1-xO films by DC sputtering. J. Mater. Sci. 42(14), 5766–5772 (2007). https://doi.org/10.1007/s10853-006-1153-x P. Lopez-Varo, J. Jiménez Tejada, J. López Villanueva, J. Carceller, M. Deen, Modeling the transition from ohmic to space charge limited current in organic semiconductors. Org. Electron. 13(9), 1700–1709 (2012). https://doi.org/10.1016/j.orgel.2012.05.025 C. Hyun Kim, O. Yaghmazadeh, Y. Bonnassieux, G. Horowitz, Modeling the low-voltage regime of organic diodes: origin of the ideality factor. J. Appl. Phys. 110(9), 093722 (2011). https://doi.org/10.1063/1.3660221 P. Mantri, S. Rizvi, B. Mazhari, Estimation of built-in voltage from steady-state current-voltage characteristics of organic diodes. Org. Electron. 14(8), 2034–2038 (2013). https://doi.org/10.1016/j.orgel.2013.04.030 F. Torricelli, D. Zappa, L. Colalongo, Space-charge-limited current in organic light emitting diodes. Appl. Phys. Lett. 96(11), 113304 (2010). https://doi.org/10.1063/1.3358147 S.M.H. Rizvi, B. Mazhari, An improved method for extraction of mobility from space charge limited current in organic semiconductor films. J. Appl. Phys. 121(15), 155501 (2017). https://doi.org/10.1063/1.4981242 M. Fina, S.S. Mao, Approximating the electrical enhancement effects in a nano-patterned, injection-limited, single-layer organic light-emitting diode. J. Appl. Phys. 112(2), 024512 (2012). https://doi.org/10.1063/1.4737389 P. Lopez-Varo, J. Jiménez-Tejada, O. Marinov, C. Chen, M. Deen, Charge density at the contacts of symmetric and asymmetric organic diodes. Org. Electron. 35, 74–86 (2016). https://doi.org/10.1016/j.orgel.2016.05.009 P. Lopez-Varo, J. Jiménez Tejada, J. López Villanueva, M. Deen, Space-charge and injection limited current in organic diodes: a unified model. Org. Electron. 15(10), 2526–2535 (2014). https://doi.org/10.1016/j.orgel.2014.05.039 E.A. Duijnstee, J.M. Ball, V.M. Le Corre, L.J.A. Koster, H.J. Snaith, J. Lim, Toward understanding space-charge limited current measurements on metal halide perovskites. ACS Energy Lett. 5(2), 376–384 (2020). https://doi.org/10.1021/acsenergylett.9b02720 S.M.H. Rizvi, P. Mantri, B. Mazhari, Traps signature in steady state current-voltage characteristics of organic diode. J. Appl. Phys. 115(24), 244502 (2014). https://doi.org/10.1063/1.4884838 Ch. Jonda, A.B.R. Mayer, W. Grothe, Determination of the barrier heights for electron injection in organic light emitting devices. J. Appl. Phys. 85(9), 6884–6888 (1999). https://doi.org/10.1063/1.370207 N. Koch, S. Duhm, J.P. Rabe, S. Rentenberger, R.L. Johnson, J. Klankermayer, F. Schreiber, Tuning the hole injection barrier height at organic/metal interfaces with (sub-) monolayers of electron acceptor molecules. Appl. Phys. Lett. 87(10), 101905 (2005). https://doi.org/10.1063/1.2041838 J.W. Kim, A. Kim, Absolute work function measurement by using photoelectron spectroscopy. Curr. Appl. Phys. 31, 52–59 (2021). https://doi.org/10.1016/j.cap.2021.07.018 W. Song, S. So, L. Cao, Angular-dependent photoemission studies of indium tin oxide surfaces. Appl. Phys. A 72(3), 361–365 (2001). https://doi.org/10.1007/s003390000534 D.R. Lide, CRC Handbook of Chemistry and Physics, 90th edn. (CRC Press/Taylor and Francis, Boca Raton, FL, 2010) K. Zojer, Simulation of charge carriers in organic electronic devices: methods with their fundamentals and applications. Adv. Opt. Mater. 9(14), 2100219 (2021). https://doi.org/10.1002/adom.202100219 H.F. Haneef, A.M. Zeidell, O.D. Jurchescu, Charge carrier traps in organic semiconductors: a review on the underlying physics and impact on electronic devices. J. Mater. Chem. C 8(3), 759–787 (2020). https://doi.org/10.1039/C9TC05695E K. Akaike, N. Koch, M. Oehzelt, Fermi level pinning induced electrostatic fields and band bending at organic heterojunctions. Appl. Phys. Lett. 105(22), 223303 (2014). https://doi.org/10.1063/1.4903360 Y. Noguchi, Y. Miyazaki, Y. Tanaka, N. Sato, Y. Nakayama, T.D. Schmidt, W. Brütting, H. Ishii, Charge accumulation at organic semiconductor interfaces due to a permanent dipole moment and its orientational order in bilayer devices. J. Appl. Phys. 111(11), 114508 (2012). https://doi.org/10.1063/1.4724349