Uncontrolled inexact information within bundle methods
Tóm tắt
Từ khóa
Tài liệu tham khảo
Brannlund, 1995, A descent proximal level bundle method for convex nondifferentiable optimization, Oper Res Lett, 17, 121, 10.1016/0167-6377(94)00056-C
Beltran C, Tadonki C, Vial JPh (2006) Solving the p-median problem with a semi-lagrangian relaxation. Comput Optim Appl 35(2):239–260
Deák, 2006, Two-stage stochastic problems with correlated normal variables: computational experiences, Ann OR, 142, 79, 10.1007/s10479-006-6162-2
Desrosiers J, Lbbecke ME (2005) A primer in column generation. In: Desaulniers G, Desrosiers J, Solomon M (eds) Column generation. Springer, US, pp 1–32 (English)
Dolan, 2002, Benchmarking optimization software with performance profiles, Math Program, 91, 201, 10.1007/s101070100263
Dentcheva, 2013, Regularization methods for optimization problems with probabilistic constraints, Math Program (Ser A), 138, 223, 10.1007/s10107-012-0539-6
de Oliveira, 2014, Level bundle methods for oracles with on-demand accuracy, Optim Methods Softw, 29, 1180, 10.1080/10556788.2013.871282
de Oliveira, 2014, Convex proximal bundle methods in depth: a unified analysis for inexact oracles, Math Program, 148, 241, 10.1007/s10107-014-0809-6
de Oliveira, 2010, Optimal scenario tree reduction for stochastic streamflows in power generation planning problems, Optim Methods Softw, 25, 917, 10.1080/10556780903420135
de Oliveira, 2011, Inexact bundle methods for two-stage stochastic programming, SIAM J Optim, 21, 517, 10.1137/100808289
de Oliveira W, Solodov M (2015) A doubly stabilized bundle method for nonsmooth convex optimization. Math Program 1–35. 10.1007/s10107-015-0873-6
Fábián, 2000, Bundle-type methods for inexact data, Cent Eur J Oper Res, 8, 35
Geoffrion, 1972, Generalized Benders decomposition, J Optim Theory Appl, 10, 237, 10.1007/BF00934810
Hintermüller, 2001, A proximal bundle method based on approximate subgradients, Comput Optim Appl, 20, 245, 10.1023/A:1011259017643
Hiriart-Urruty J-B, Lemaréchal C (1993) Convex analysis and minimization algorithms. Grund. der math. Wiss, Springer-Verlag, pp 305–306 (two volumes)
Kelley, 1960, The cutting plane method for solving convex programs, J Soc Ind Appl Math, 8, 703, 10.1137/0108053
Kiwiel, 2006, A proximal bundle method with approximate subgradient linearizations, SIAM J Optim, 16, 1007, 10.1137/040603929
Lemaréchal C (2001) Lagrangian relaxation. In: Jünger M, Naddef D (eds) Computational combinatorial optimization. Springer Verlag, Heidelberg, pp 112–156
Magnanti, 1981, Accelerating benders decomposition: algorithmic enhancement and model selection criteria, Oper Res, 29, 464, 10.1287/opre.29.3.464
Ruszczyński A, Shapiro A (2003) Stochastic programming. Handbooks in operations research and management science, vol 10. Elsevier, Amsterdam
Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on stochastic programming: modeling and theory. MPS-SIAM series on optimization. SIAM—Society for Industrial and Applied Mathematics and Mathematical Programming Society, Philadelphia
Solodov, 2003, On approximations with finite precision in bundle methods for nonsmooth optimization, J Optim Theory Appl, 119, 151, 10.1023/B:JOTA.0000005046.70410.02
Tahanan M, van Ackooij W, Frangioni A, Lacalandra F (2015) Large-scale unit commitment under uncertainty. 4OR-Q J Oper Res 13(2):115–171
van Ackooij W, Berge V, de Oliveira W, Sagastizábal C (2015) Probabilistic optimization via approximate p-efficient points and bundle methods. Tech. report. Optimization Online report number 4927
van Ackooij, 2014, Level bundle methods for constrained convex optimization with various oracles, Comput Optim Appl, 57, 555, 10.1007/s10589-013-9610-3
van Ackooij W, Frangioni A, Oliveira W (2015) Inexact stabilized benders decomposition approaches to chance-constrained problems with finite support (Submitted). Available as preprint TR-15-01 of Universita di Pisa Dipartimento di Informatica
van Ackooij, 2014, Joint chance constrained programming for hydro reservoir management, Optim Eng, 15, 509