Uncertainty quantification in tsunami modeling using multi-level Monte Carlo finite volume method

Journal of Mathematics in Industry - Tập 6 - Trang 1-26 - 2016
Carlos Sánchez-Linares1, Marc de la Asunción1, Manuel J Castro1, José M González-Vida2, Jorge Macías1, Siddhartha Mishra3
1Dpto. Análisis Matemático, Estadística e Investigación operativa y Matemática Aplicada, University of Málga, Málaga, Spain
2Dpto. Matemática Aplicada, University of Málga, Málaga, Spain
3Departement Mathematik, ETH Zürich, Zürich, Switzerland

Tóm tắt

Shallow-water type models are commonly used in tsunami simulations. These models contain uncertain parameters like the ratio of densities of layers, friction coefficient, fault deformation, etc. These parameters are modeled statistically and quantifying the resulting solution uncertainty (UQ) is a crucial task in geophysics. We propose a paradigm for UQ that combines the recently developed path-conservative spatial discretizations efficiently implemented on cluster of GPUs, with the recently developed Multi-Level Monte Carlo (MLMC) statistical sampling method and provides a fast, accurate and computationally efficient framework to compute statistical quantities of interest. Numerical experiments, including realistic simulations in real bathymetries, are presented to illustrate the robustness of the proposed UQ algorithm.

Tài liệu tham khảo

Fritz DJ, Hager WH, Minor H-E. Lituya Bay case: rockslide impact and wave run-up. Sci Tsunami Hazards. 2001;19(1):3-22. Fritz HM, Mohammed F, Yoo J. Lituya Bay landslide impact generated mega-tsunami 50th anniversary. Pure Appl Geophys. 2009;166(1-2):153-75. Okada Y. Surface deformation due to shear and tensile faults in a half space. Bull Seismol Soc Am. 1985;75:1135-54. Yamazaki Y, Cheung KF, Pawlak G, Lay T. Surges along the Honolulu coast from the 2011 Tohoku tsunami. Geophys Res Lett. 2012;39(9):L09604. Grilli ST, Harris JC, Bakhsh TST, Masterlark TL, Kyriakopoulos C, Kirby JT, Shi FY. Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: comparison to far and near-field observations. Pure Appl Geophys. 2013;170(6-8):1333-59. Fernández ED, Bouchut F, Bresch D, Castro MJ, Mangeney A. A new Savage-Hutter type models for submarine avalanches and generated tsunami. J Comput Phys. 2008;227:7720-54. Dal Maso G, Lefloch P, Murat F. Definition and weak stability of nonconservative products. J Math Pures Appl. 1995;74:483-548. Parés C, Muñoz Ruíz ML. On some difficulties of the numerical approximation of nonconservative hyperbolic systems. Bol Soc Esp Mat Apl. 2009;47:23-52. Parés C. Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J Numer Anal. 2006;44(1):300-21. Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Skadron K. A performance study of general-purpose applications on graphics processors using CUDA. J Parallel Distrib Comput. 2008;68:1370-80. Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC. GPU computing. Proc IEEE. 2008;96:879-99. NVIDIA. NVIDIA developer zone. http://developer.nvidia.com/category/zone/cuda-zone. Khronos OpenCL Working Group. The OpenCL specification. http://www.khronos.org/opencl. Fang J, Varbanescu AL, Sips H. A comprehensive performance comparison of CUDA and OpenCL. In: 40th international conference on parallel processing (ICPP 2011). 2011. p. 216-25. Asunción M, Mantas JM, Castro MJ. Simulation of one-layer shallow water systems on multicore and CUDA architectures. J Supercomput. 2011;58:206-14. Brodtkorb AR, Sætra ML, Altinakar M. Efficient shallow water simulations on GPUs: implementation, visualization, verification, and validation. Comput Fluids. 2012;55:1-12. Asunción M, Mantas JM, Castro MJ. Programming CUDA-based GPUs to simulate two-layer shallow water flows. In: Euro-Par 2010 - parallel processing. 2010. p. 353-64. (Lecture notes in computer science; vol. 6272). Castro MJ, Ortega S, Asunción M, Mantas JM, Gallardo JM. GPU computing for shallow water flow simulation based on finite volume schemes. C R, Méc. 2011;339:165-84. Message Passing Interface Forum: A Message Passing Interface Standard. University of Tennessee. Acuña MA, Aoki T. Real-time tsunami simulation on a multi-node GPU cluster [Poster]. In: ACM/IEEE conference on supercomputing 2009 (SC 2009). 2009. Xian W, Takayuki A. Multi-GPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster. Parallel Comput. 2011;9:521-35. Viñas M, Lobeiras J, Fraguela BB, Arenaz M, Amor M, García JA, Castro MJ, Doallo R. A multi-GPU shallow-water simulation with transport of contaminants. Concurr Comput, Pract Exp. 2012;25:1153-69. Asunción M, Mantas JM, Castro MJ, Fernández-Nieto ED. An MPI-CUDA implementation of an improved Roe method for two-layer shallow water systems. J Parallel Distrib Comput. 2012;72(9):1065-72. Jacobsen DA, Senocak I. Multi-level parallelism for incompressible flow computations on GPU clusters. Parallel Comput. 2013;39:1-20. Bijl H, Lucor D, Mishra S, Schwab C, editors. Uncertainty quantification in computational fluid dynamics. Heidelberg: Springer; 2014. (Lecture notes in computational science and engineering; vol. 92). Chen QY, Gottlieb D, Hesthaven JS. Uncertainty analysis for the steady-state flows in a dual throat nozzle. J Comput Phys. 2005;204:378-98. Poette G, Després B, Lucor D. Uncertainty quantification for systems of conservation laws. J Comput Phys. 2009;228:2443-67. Tryoen J, Le Maitre O, Ndjinga M, Ern A. Intrusive projection methods with upwinding for uncertain non-linear hyperbolic systems. J Comput Phys. 2010;229(18):6485-511. Xiu D, Hesthaven JS. High-order collocation methods for differential equations with random inputs. SIAM J Sci Comput. 2005;27:1118-39. Zabaras N, Ma X. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J Comput Phys. 2009;228:3084-113. Tokareva S. Stochastic finite volume methods for computational uncertainty quantification in hyperbolic conservation laws. Dissertation, Nr. 21498. Eidgenossische Technische Hochschule ETH Zurich; 2013. Mishra S, Schwab C. Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data. Math Comput. 2012;280:1979-2018. Giles M. Improved multilevel Monte Carlo convergence using the Milstein scheme. Preprint NA-06/22. Oxford Computing Lab., Oxford, UK; 2006. Giles M. Multilevel Monte Carlo path simulation. Oper Res. 2008;56:607-17. Heinrich S. Multilevel Monte Carlo methods. In: Large-scale scientific computing. Berlin: Springer; 2001. p. 58-67. (Lecture notes in computer science; vol. 2170). Mishra S, Schwab C, Sukys J. Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimension. J Comput Phys. 2012;231:3365-88. Mishra S, Schwab C, Sukys J. Multilevel Monte Carlo finite volume methods for shallow water equations with uncertain topography in multi-dimensions. SIAM J Sci Comput. 2012;34(6):761-84. Sánchez-Linares C, Asunción M, Castro MJ, Mishra S, Sukys J. Multi-level Monte Carlo finite volume method for shallow water equations with uncertain parameters applied to landslides-generated tsunamis. Appl Math Model. 2015;39(23-24):7211-26. Bouchut F, Mangeney-Castelnau A, Perthame B, Vilotte JP. A new model of Saint-Venant and Savage-Hutter type for gravity driven shallow water flows. C R Math Acad Sci Paris. 2003;336(6):531-6. Asunción M, Mantas JM, Castro MJ, Ortega S. Scalable simulation of tsunamis generated by submarine landslides on GPU clusters. Accepted on Environ Model Softw. May 2016. Volpert AI. Spaces BV and quasilinear equations. Math USSR Sb. 1967;73:255-302. Castro MJ, Fernández-Nieto ED, Morales de Luna T, Narbona-Reina G, Parés C. A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport. ESAIM: Math Model Numer Anal. 2013;47(1):1-32. Castro MJ, Fernández-Nieto ED, Ferreiro AM, García Rodríguez JA, Parés C. High order extensions of Roe schemes for two dimensional nonconservative hyperbolic systems. J Sci Comput. 2009;39(1):67-114. Harten A, Lax PD, van Leer B. On upstream differencing and Godunov type schemes for hyperbolic conservation laws. SIAM Rev. 1983;25:35-61. Degond P, Peyrard P-F, Russo G, Villedieu P. Polynomial upwind schemes for hyperbolic systems. C R Acad Sci Paris Ser I. 1999;328:479-83. Castro MJ, Fernández-Nieto ED. A class of computationally fast first order finite volume solvers: PVM methods. SIAM J Sci Comput. 2012;34:A2173-A2196. Castro MJ, Gallardo JM, Marquina A. A class of incomplete Riemann solvers based on uniform rational approximations to the absolute value function. J Sci Comput. 2014;60(2):363-89. Castro MJ, LeFloch PG, Muñoz ML, Parés C. Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J Comput Phys. 2008;3227:8107-29. Hou TY, LeFloch PG. Why nonconservative schemes converge to wrong solutions: error analysis. Math Comput. 1994;62:497-530. Muñoz ML, Parés C. On the convergence and well-balanced property of path-conservative numerical schemes for systems of balance laws. J Sci Comput. 2011;48:274-95. van Leer B. Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s method. Comput Phys. 1979;32:101-36. Gottlieb S, Shu CW. Total variation diminishing Runge-Kutta schemes. Math Comput. 1998;67:73-85. Matsumoto M, Nishimura T. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul. 1998;8(1):3-30. Fernández-Nieto ED, Castro MJ, Parés C. On an intermediate field capturing Riemann solver based on a parabolic viscosity matrix for the two-layer shallow water system. J Sci Comput. 2011;48(1-3):117-40. Miller DJ. Giant waves in Lituya Bay, Alaska: a timely account of the nature and possible causes of certain giant waves, with eyewitness reports of their destructive capacity. Professional paper; 1960. Asunción M, Castro MJ, González JM, Macías J, Ortega S, Sánchez C. Modeling the Lituya Bay landslide-generated mega-tsunami with a Savage-Hutter shallow water coupled model. NOAA Technical memorandum; 2013.