Uncertainty guidance in proton therapy planning visualization
Tài liệu tham khảo
Ceneda, 2018, Guidance or no guidance? A decision tree can help, 19
Ceneda, 2019, A review of guidance approaches in visual data analysis: A multifocal perspective, Comput Graph Forum, 38, 861, 10.1111/cgf.13730
Gillmann, 2021, Ten open challenges in medical visualization, IEEE Comput Graph Appl, 41, 7, 10.1109/MCG.2021.3094858
Raidou, 2018, Uncertainty visualization: Recent developments and future challenges in prostate cancer radiotherapy planning, 13
Saw, 2018, External beam planning module of eclipse for external beam radiation therapy, Med Dosim, 43, 195, 10.1016/j.meddos.2018.03.003
Schlachter, 2019, State-of-the-art report: Visual computing in radiation therapy planning, Comput Graph Forum, 38, 753, 10.1111/cgf.13726
Ristovski, 2014, Uncertainty in medical visualization: Towards a taxonomy, Comput Graph, 39, 60, 10.1016/j.cag.2013.10.015
Gillmann, 2021, Uncertainty-aware visualization in medical imaging — A survey, Comput Graph Forum, 40, 665, 10.1111/cgf.14333
Furmanová, 2020, VAPOR: Visual analytics for the exploration of pelvic organ variability in radiotherapy, Comput Graph, 91, 25, 10.1016/j.cag.2020.07.001
Furmanová, 2021, PREVIS: Predictive visual analytics of anatomical variability for radiotherapy decision support, Comput Graph, 97, 126, 10.1016/j.cag.2021.04.010
Suzuki, 2012, Uncertainty in patient set-up margin analysis in radiation therapy, J Radiat Res, 53, 615, 10.1093/jrr/rrs003
Paganetti, 2018, Proton relative biological effectiveness - Uncertainties and opportunities, Int J Part Therapy, 5, 2, 10.14338/IJPT-18-00011.1
Mohan, 2017, Radiobiological issues in proton therapy, Acta Oncol, 56, 1367, 10.1080/0284186X.2017.1348621
Hofmaier, 2020, Variance-based sensitivity analysis for uncertainties in proton therapy: A framework to assess the effect of simultaneous uncertainties in range, positioning and RBE model predictions on RBE-weighted dose distributions, Med Phys, 48, 805, 10.1002/mp.14596
Rørvik, 2018, Exploration and application of phenomenological RBE models for proton therapy, Phys Med Biol, 63, 10.1088/1361-6560/aad9db
Kamp, 2019, Application of variance-based uncertainty and sensitivity analysis to biological modeling in carbon ion treatment plans, Med Phys, 46, 437, 10.1002/mp.13306
Otterlei, 2021, Variation in relative biological effectiveness for cognitive structures in proton therapy of pediatric brain tumors, Acta Oncol, 60, 267, 10.1080/0284186X.2020.1840626
Ceneda, 2017
Ceneda, 2020, Guide me in analysis: A framework for guidance designers, Comput Graph Forum, 39, 269, 10.1111/cgf.14017
Ceneda, 2017, Characterizing guidance in visual analytics, IEEE Trans Vis Comput Graph, 23, 111, 10.1109/TVCG.2016.2598468
Sperrle, 2021, Co-adaptive visual data analysis and guidance processes, Comput Graph, 100, 93, 10.1016/j.cag.2021.06.016
Stoiber, 2022, Perspectives of visualization onboarding and guidance in VA, Vis Inf, 6, 68, 10.1016/j.visinf.2022.02.005
Stoiber, 2021, Design and comparative evaluation of visualization onboarding methods, 1, 10.1145/3481549.3481558
Torsney-Weir, 2018, Risk fixers and sweet spotters: A study of the different approaches to using visual sensitivity analysis in an investment scenario, 119
Bögl, 2013, Visual analytics for model selection in time series analysis, IEEE Trans Vis Comput Graph, 19, 2237, 10.1109/TVCG.2013.222
Torsney-Weir, 2015, Decision making in uncertainty visualization, 1
Schlachter, 2020, Principles of visualization in radiation oncology, Oncology, 98, 412, 10.1159/000504940
Budiarto, 2011, A population-based model to describe geometrical uncertainties in radiotherapy: Applied to prostate cases, Phys Med Biol, 56, 1045, 10.1088/0031-9155/56/4/011
Berger, 2011, Uncertainty-aware exploration of continuous parameter spaces using multivariate prediction, Comput Graph Forum, 30, 911, 10.1111/j.1467-8659.2011.01940.x
Brodlie, 2012, 81, 10.1007/978-1-4471-2804-5_6
Bonneau, 2014, Overview and state-of-the-art of uncertainty visualization, 5, 10.1007/978-1-4471-6497-5_1
Calvert, 2017, Visualisation of uncertainty in probabilistic traffic models for policy and operations, Transportation, 44, 701, 10.1007/s11116-015-9673-3
Belyakov, 2020, Guidance in the visual analytics of cartographic images in the decision-making process, 351
Floricel, 2022, THALIS: Human-machine analysis of longitudinal symptoms in cancer therapy, IEEE Trans Vis Comput Graph, 28, 151, 10.1109/TVCG.2021.3114810
Müller, 2020, A visual approach to explainable computerized clinical decision support, Comput Graph, 91, 1, 10.1016/j.cag.2020.06.004
Kamal, 2021, Recent advances and challenges in uncertainty visualization: A survey, J Vis, 24, 861, 10.1007/s12650-021-00755-1
Weissleder, 2011, Chapter 14: Imaging physics, 690
Luciani, 2019, Details-first, show context, overview last: Supporting exploration of viscous fingers in large-scale ensemble simulations, IEEE Trans Vis Comput Graph, 25, 1225, 10.1109/TVCG.2018.2864849
Plumlee, 2006, Zooming versus multiple window interfaces: Cognitive costs of visual comparisons, ACM Trans Comput-Hum Interact, 13, 179, 10.1145/1165734.1165736
Kehrer, 2013, A model for structure-based comparison of many categories in small-multiple displays, IEEE Trans Vis Comput Graph, 19, 2287, 10.1109/TVCG.2013.122
Tufte, 2001
Wentzel, 2019, Cohort-based T-SSIM visual computing for radiation therapy prediction and exploration, IEEE Trans Vis Comput Graph, 26, 949
Hintze, 1998, Violin plots: A box plot-density trace synergism, Am Stat, 52, 181
Zaghian, 2017, A chance-constrained programming framework to handle uncertainties in radiation therapy treatment planning, Eur J Oper Res, 266, 736, 10.1016/j.ejor.2017.10.018
Musleh, 2022, Visual analysis of blow molding machine multivariate time series data, J Vis, 25, 1329, 10.1007/s12650-022-00857-4
Wall, 2019, A heuristic approach to value-driven evaluation of visualizations, IEEE Trans Vis Comput Graph, 25, 491, 10.1109/TVCG.2018.2865146
Brooke, 1996, SUS–A quick and dirty usability scale, Usability Eval Ind, 189, 4
Lam, 2012, Empirical studies in information visualization: Seven scenarios, IEEE Trans Vis Comput Graph, 18, 1520, 10.1109/TVCG.2011.279
Stitz, 2016, AVOCADO: Visualization of workflow–derived data provenance for reproducible biomedical research, Comput Graph Forum, 35, 481, 10.1111/cgf.12924