Uncertainty analysis of hydrological modeling in a tropical area using different algorithms

Frontiers of Earth Science - Tập 12 Số 4 - Trang 661-671 - 2018
Ammar Rafiei Emam1, Martin Kappas1, S. R. Fassnacht2, Nguyen Hoang Khanh Linh3
1Department of Cartography, GIS and Remote Sensing, University of Goettingen, 37077, Goettingen, Germany
2Colorado State University, Fort Collins, CO, 80523-1476, USA
3Faculty of Land Resources and Agricultural Environment (FLRAE), Hue University of Agriculture and Forestry (HUAF), Hue University, Hue City, 0084, Vietnam

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abbaspour K C (2011). SWAT-CUP4: SWAT Calibration and Uncertainty Programs–A User Manual. Swiss Federal Institute of Aquatic Science and Technology, Switzerland

Abbaspour K C, Johnson C A, van Genuchten M Th (2004). Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J, 3(4): 1340–1352

Abbaspour K C, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol (Amst), 333(2–4): 413–430

Arnold J G, Srinivasan P, Muttiah R S, Williams J R (1998). Large area hydrologic modeling and assessment, Part I: model development. J Am Water Resour Assoc, 34(1): 73–89

Beven K, Binley A (1992). The future of distributed models: model calibration and uncertainty prediction. Hydrol Processes, 6(3): 279–298

Blasone R S, Madsen H, Rosbjerg D (2008a). Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling. J Hydrol (Amst), 353(1–2): 18–32

Blasone R S, Vrugt J A, Madsen H, Rosbjerg D, Robinson B A, Zyvoloski G A (2008b). Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Water Resour, 31(4): 630–648

Boughton W C (2004). The Australian water balance model. Environ Model Softw, 19(10): 943–956

Carpenter T M, Georgakakos K P (2006). Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales. J Hydrol (Amst), 329(1–2): 174–185

Croke B F W, Andrews F, Jakeman A J, Cuddy S M, Luddy A (2006). IHACRES Classic Plus: a redesign of the IHACRES rainfall-runoff model. Environ Model Softw, 21(3): 426–427

Eberhart R C, Kennedy J A (1995). A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE Service Center, Piscataway, NJ, Nagoya, Japan

Freer J, Beven K, Ambroise B (1996). Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resour Res, 32: 2161–2173

Green WH, Ampt G A (1911). Studies on soil physics, 1. The flow of air and water through soils. J Agric Sci, 4: 11–24

Hargreaves G L, Hargreaves G H, Riley J P (1985). Agricultural benefits for Senegal River Basin. J Irrig Drain Eng, 111(2): 113–124

Jin X, Xu C Y, Zhang Q, Singh V P (2010). Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. J Hydrol (Amst), 383(3–4): 147–155

Khoi D N, Thom V T (2015). Parameter uncertainty analysis for simulating streamflow in a river catchment of Vietnam. Glob Ecol Conserv, 4: 538–548

Liu Y, Gupta H V (2007). Uncertainty in hydrologic modeling: toward an integrated data assimilation framework. Water Resour Res, 43(7): W07401

McKay M D, Beckman R J, Conover WJ (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21: 239–245

Monteith J L (1965). Evaporation and environment. In the state and movement of water in living organisms. 19th Symposia of the society for experimental biology. London: Cambridge University Press

Moriasi D N, Arnold J G, van Liew M W, Bringer R L, Harmel R D, Veith T L (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3): 885–900

Neitsch S L, Arnold J G, Kiniry J R, Williams J R, King K W (2011). Soil and water assessment Tool. Theoretical documentation: Version 2000. TWRI TR-191. Texas Water Resources Institute, College Station, TX, USA

Priestley C H B, Taylor R J (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. MonWeather Rev, 100(2): 81–92

Rafiei Emam A, Kappas M, Hosseini S Z (2015). Assessing the impact of climate change on water resources, crop production and land degradation in a semi-arid river basin. Hydrol Res, 46(6): 854–870

Rafiei Emam A, Kappas M, Linh N, Renchin T (2017). Hydrological modeling and runoff mitigation in an ungauged basin of central Vietnam using SWAT model. Hydrology, 4(1): 16

Refsgaard J C (1997). Parameterization, calibration, and validation of distributed hydrological models. J Hydrol (Amst), 198(1–4): 69–97

Refsgaard J C, Storm B (1995). MIKE SHE. In: Singh V P, ed. Computer Models of Watershed Hydrology. Colorado: Water Resources Publications, 809–846

Santhi C J, Arnold J G, Williams J R, Dugas W A, Srinivasan R, Hauck L M (2001). Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc, 37(5): 1169–1188

Setegn S G, Srinivasan R, Melesse A M, Dargahi B (2010). SWAT model application and prediction uncertainty analysis in the Lake Tana Basin, Ethiopia. Hydrol Processes, 24: 357–367

Shen Z Y, Chen L, Chen T (2012). Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method: a case study of SWAT model applied to Three Gorges Reservoir Region, China. Hydrol Earth Syst Sci, 16(1): 121–132

Singh V P (1989). Hydrologic Systems Vol. II Watershed Modelling. Englewood Cliffs: Prentice-Hall, Inc.

USDA (United States Department of Agriculture) (1986). Urban Hydrology for Small Watersheds, Technical Release 55(TR-55), 2nd ed. Natural Resources Conservation Service, Conservation Engineering Division, Washington, DC, USA

van Griensven A, Meixner T (2006). Methods to quantify and identify the sources of uncertainty for river basin water quality models. Water Sci Technol, 53(1): 51–59

van Griensven A, Meixner T, Srinivasan R, Grunwald S (2008). Fit-forpurpose analysis of uncertainty using split-sampling evaluations. Hydrol Sci J, 53(5): 1090–1103

Vrugt J A, Gupta H V, Bouten W, Sorooshian S (2003). A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res, 39(8): https://doi.org/10.1029/2002WR001642

Wu H, Chen B (2015). Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by GLUE, SUFI-2, and ParaSol methods. Ecol Eng, 76: 110–121

Xu C Y (2002). WASMOD—the water and snow balance modelling system. In: Singh V P, Frevert D K, eds. Mathematical Models of SmallWatershed Hydrology and Applications (Chapter 17). Chelsea: Water Resources Publications, LLC

Yang J, Reichert P, Abbaspour K C, Xia J, Yang H (2008). Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J Hydrol (Amst), 358(1–2): 1–23

Yang J, Reichert P, Abbaspour K C, Yang H (2007). Hydrological modelling of the Chaohe Basin in China: statistical model formulation and Bayesian inference. J Hydrol (Amst), 340(3–4): 167–182

Zhang J, Li Q, Guo B, Gong H (2015). The comparative study of multisite uncertainty evaluation method based on SWAT model. Hydrol Processes, 29(13): 2994–3009

Zhang X, Srinivasan R, Zhao K, Liew M V (2009). Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model. Hydrol Processes, 23(3): 430–441