Uncertainty Principle in Terms of Entropy for the Riemann–Liouville Operator

Besma Amri1, Lakhdar T. Rachdi1
1Department of Mathematics, Faculty of Sciences of Tunis, Tunis, Tunisia

Tóm tắt

We prove Hausdorff–Young inequality for the Fourier transform connected with Riemann–Liouville operator. We use this inequality to establish the uncertainty principle in terms of entropy. Next, we show that we can derive the Heisenberg–Pauli–Weyl inequality for the precedent Fourier transform.

Tài liệu tham khảo

Baccar, C., Hamadi, N.B., Rachdi, L.T.: Inversion formulas for the Riemann–Liouville transform and its dual associated with singular partial differential operators. Int. J. Math. Math. Sci. 2006, 1–26 (2006) Baccar, C., Hamadi, N.B., Rachdi, L.T.: Best approximation for Weierstrass transform connected with Riemann–Liouville operator. Commun. Math. Anal. 5(01), 65–83 (2008) Baccar, C., Rachdi, L.T.: Spaces of \(D_{L^p}\)-type and a convolution product associated with the Riemann–Liouville operator. Bull. Math. Anal. Appl. 1(3), 16–41 (2009) Beckner, W.: Inequalities in Fourier analysis. Ann. Math. 102, 159–182 (1975) Beckner, W.: Pitt’s inequality and the uncertainty principle. Proc. Am. Math. Soc. 123, 1897–1905 (1995) Beurling, A.: The Collected Works of Arne Beurling, vol. 1-2. Birkhäuser, Boston (1989) Bialynicki-Birula, I.: Entropic uncertainty relations in quantum mechanics, quantum probability and applications II. In Accardi, L., Von Waldenfels, W. (eds.) Lecture Notes in Mathematics, vol. 1136, pp. 90–103 (1985) Bloom, W.R., Heyer, H.: Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter Studies in Mathematics, vol. 20. Walter de Gruyter, Berlin, New York (1995) Bonami, A., Demange, B., Jaming, P.: Hermite functions and uncertainty principles for the Fourier and the widowed Fourier transforms. Rev. Mat. Iberoam. 19, 23–55 (2003) Cowling, M.G., Price, J.F.: Generalizations of Heisenberg inequality in Harmonic analysis, (Cortona, 1982). In: Lecture Notes in Mathematics, vol. 992, pp. 443–449 (1983) Erdely, A., et al.: Tables of Integral Transforms, vol. 2. Mc Graw-Hill Book Company, New York (1954) Erdely, A., et al.: Asymptotic Expansions. Dover publications, New York (1956) Fawcett, J.A.: Inversion of n-dimensional spherical averages. SIAM J. Appl. Math. 45(02), 336–341 (1985) Fitouhi, A.: Inégalité de Babenko et inégalité logarithmique de Sobolev pour l’opérateur de Bessel. C. R. Acad. Sci. Paris Ser. I 305(Srie I), 877–880 (1987) Folland, G.B.: Real Analysis Modern Techniques and Their Applications, Pure and Applied Mathematics. Wiley, New York (1984) Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3, 207–238 (1997) Hardy, G.H.: A theorem concerning Fourier transform. J. Lond. Math. Soc. 8, 227–231 (1933) Helgason, S.: The Radon Transform, 2nd edn. Birkhäuser, Boston (1999) Hellsten, H., Andersson, L.-E.: An inverse method for the processing of synthetic aperture radar data. Inverse Probl. 3(1), 111–124 (1987) Herberthson, M.: A numerical implementation of an inverse formula for CARABAS raw data, Internal Report D30430-3.2, National Defense Research Institude, FOA, Box 1165; S-581 11, Linköping (1986) Hirschman, I.I.: A note on entropy. Am. J. Math. 79(1), 152–156 (1957) Hirschman, I.I.: Variation diminishing Hankel transforms. J. Anal. Math. 8(01), 307–336 (1960) Hleili, Kh, Omri, S., Rachdi, L.T.: Uncertainty principle for the Riemann–Liouville operator. Cubo 13(03), 91–115 (2011) Lebedev, N.N.: Special Functions and Their Applications. Dover publications, New York (1972) Morgan, G.W.: A note on Fourier transforms. J. Lond. Math. Soc. 9, 178–192 (1934) Omri, S., Rachdi, L.T.: An \(L^p-L^q\) version of Morgan’s theorem associated with Riemann–Liouville transform. Int. J. Math. Anal. 1(17), 805–824 (2007) Omri, S., Rachdi, L.T.: Heisenberg–Pauli–Weyl uncertainty principle for the Riemann–Liouville operator. J. Inequal. Pure Appl. Math. 9(3), 1–23 (2008) Rachdi, L.T., Rouz, A.: On the range of the Fourier transform connected with Riemann–Liouville operator. Ann. Math. Blaise Pascal 16(02), 355–397 (2009) Shanon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 and 623–656 (1948/1949) Stein, E.M.: Interpolation of linear operator. Trans. Am. Math. Soc. 83(02), 482–492 (1956) Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University, New Jersey (1971) Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1959)