Uncertainties in the GSWP-2 precipitation forcing and their impacts on regional and global hydrological simulations
Tóm tắt
The Global Soil Wetness Project (GSWP) is an international initiative aimed at producing global data sets of soil wetness and energy and water fluxes by driving land surface models with state-of-the-art 1° by 1° atmospheric forcing and land surface parameters. It also provides a unique opportunity to develop and test land surface parameterizations at the global scale, using multi-year off-line simulations that are not affected by the systematic errors found in atmospheric models. Nevertheless, the accuracy and reliability of the 10−year GSWP-2 atmospheric forcing remain questionable. A first comparison using the high-resolution Rhône-AGGregation (Rhône-AGG) database reveals that the baseline GSWP-2 precipitation forcing is drastically overestimated over the Rhône river basin. Hydrological simulations driven with each dataset and using the ISBA land surface model and the MODCOU river routing model are also compared. The simulated river discharges are validated against a dense network of river gauges and are generally less realistic when using the GSWP-2 instead of the Rhône-AGG precipitation forcing. Secondly, the GSWP-2 precipitation forcing is compared with three alternative data sets (GPCP-2, CRU-2, CMAP) at the global scale. Moreover, the results of a global sensitivity study to the precipitation forcing conducted with six land surface models are shown. The TRIP river routing model is used to convert daily runoff from all models into river discharges, which are compared at 80 gauging stations distributed over the globe. In agreement with the regional evaluation, the results reveal that the baseline GSWP-2 precipitation forcing is generally overestimated over the mid and high latitudes, which implies systematic errors in the simulated discharges. This study reveals that the empirical wind corrections applied to the GSWP-2 precipitation forcing are exaggerated, whereas the GPCP satellite adjustments seem to be useful for simulating realistic annual mean river discharges over the East Siberian river basins.
Tài liệu tham khảo
Adam JC, Lettenmaier DP (2003) Adjustment of global gridded precipitation for systematic bias. J Geophys Res 108(D9), 4257. DOI:10.1029/2002JD002499, 2003
Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). J Hydrometeorol 4:1147–1167
Boone A, Wetzel PJ (1999) A simple scheme for modeling sub-grid soil texture variability for use in an atmospheric climate model. J Meteor Soc Jpn 77:317–333
Boone A, Calvet JC, Noilhan J (1999) Inclusion of a third soil layer in a land surface scheme using the force-restore method. J Appl Meteor 38:1611–1630
Boone A, Masson V, Meyers T, Noilhan J (2000) The influence of the inclusion of soil freezing on simulation by a soil–atmosphere-transfer scheme. J Appl Meteor 9:1544–1569
Boone A, Habets F, Noilhan J (2001) The Rhône-aggregation experiment. GEWEX News 11(3):3–5
Boone A, Coauthors (2004) The Rhône-aggregation land surface scheme intercomparison project: an overview. J Clim 17:187–208
Champeaux J, Acros LD, Bazile E, Giard D, Gourtorbe JP, Habets F, Noilhan J, Roujean JL (2000) AVHRR-derived vegetation mapping over western Europe for use in numerical weather prediction models. Int J Remote Sens 21:1183–1199
Chapelon N, Douville H, Kosuth P, Oki T (2002) Off-line simulation of the Amazon water balance : a sensitivity study with implications for GSWP. Clim Dyn 19:141–154
Deardorff JW (1977) A parametrization of ground-surface moisture content for use in atmospheric prediction model. J Appl Meteor 16:1182–1185
Deardorff JW (1978) Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J Geophys Res 20:1889–1903
Decharme B, Douville H (2006) Introduction of a sub-grid hydrology in the ISBA land surface model. Clim Dyn 26:65–78
Decharme B, Douville H, Boone A, Habets F, Noilhan J (2006) Impact of an exponential profile of saturated hydraulic conductivity within the ISBA LSM: simulations over the Rhône basin. J Hydrometeorol 7:61–80
Dirmeyer PA (2000) Using a global soil wetness dataset to improve seasonal climate simulation. J Clim 13:2900–2922
Dirmeyer PA (2001) An evaluation of the strength of land–atmosphere coupling. J Hydrometeorol 2:329–344
Dirmeyer PA, Zeng FJ (1999), Precipitation infiltration in the simplified SiB land surface scheme. J Meteor Soc Jpn 77:291–303
Dirmeyer PA, Dolman AJ, Sato N (1999) The Global Soil Wetness Project : a pilot project for global land surface modeling and validation. Bull Am Meteor Soc 80:851–878
Dirmeyer PA, Gao X, Oki T (2002) The Second Global Soil Wetness Project GSWP2: science and implementation plan. IGPO publication Series 37, 65 pp, International GEWEX Project Office
Dirmeyer PA, Gao X, Zhao M, Guo Z, Oki T, Hanasaki N (2006) The Second Global Soil Wetness Project (GSWP-2): multi-model analysis and implications for our perception of the land surface. Bull Am Meteor Soc (accepted)
Douville H (1998) Validation and sensitivity of the global hydrologic budget in stand-alone simulations with the ISBA land-surface scheme. Clim Dyn 14:131–171
Douville H (2002) Influence of soil moisture on the Asian and African monsoons. Part II: Interannual variability. J Clim 15:701–720
Douville H (2003), Assessing the influence of soil moisture on seasonal climate variability with AGCMs. J Hydrometeorol 4:1044–1066
Douville H, Chauvin F (2000) Relevance of soil moisture for seasonal climate predictions: a preliminary study. Clim Dyn 16:719–736
Douville H, Royer J-F, Mahfouf J-F (1995) A new snow parameterization for the Météo-France climate model. Part I: validation in stand-alone experiments. Clim Dyn 12:21–35
Douville H, Chauvin F, Broqua H (2001) Influence of soil moisture on the Asian and African monsoons. Part I: Mean monsoon and daily precipitation. J Climte 14:2381–2403
Ducharne A, Koster DR, Suarez MJ, Stieglitz M, Kumar P (2000) A catchement-based approach to modeling land surface process in a general circulation model, 2, Parameter estimation and model demonstration. J Geophys Res 105:24823–24838
Dümenil L, Todini E (1992) A rainfall-runoff scheme for use in the Hamburg climate model. Adv Theor Hydrol 9:129–157
Durand Y, Brun E, Méridol L, Guyomarc’h G, Lesaffre B, Martin E (1993) A meteorological estimation of relevant parameters for snow schemes used with atmospheric models. Ann Glaciol 18:65–71
Ek MB, Mitchell KE, Lin Y, Grunmann P, Rogers E, Gayno G, Koren V, Tarpley JD (2003) Implementation of the upgraded Noah land-surface model in the NCEP operational mesoscale Eta model. J Geophys Res 108, 8851. DOI:10.1029/2002JD003296
Entin J. K., A. Robock, Vinnikov KYa, Zabelin V, Liu S, Namkhai A (1999) Evaluation of Global Soil Wetness Project soil moisture simulations. J Meteor Soc Jpn 77:183–198
Essery RL, The best MJ, Betts A, Cox PM, Taylor CM (2003), Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J Hydrometeorol 4:530–543
Etchevers P, Colaz C, Habets F (2001) Simulation of the water budget and the rivers flows of the Rhône basin from 1981 to 1994. J Hydrol 244:60–85
Fekete BM, Vörösmarty CJ, Road JO, Willmott CJ (2003), Uncertainties in Precipitation and their impacts on runoff estimates. J Clim 17:294–304
Gedney N, Cox PM (2003), The sensitivity of global climate model simulations to the representation of soil moisture heterogeneity. J Hydrometeorol 4:1265–1275
Gusev, Ye M, Nasonova ON (2003) The simulation of heat and water exchange in the boreal spruce forest by the land-surface model SWAP. J Hydrol 280:162–191
Habets F, Noilhan J, Golaz C, Goutorbe JP, Lacarrère P, Leblois E, Ledoux E, Martin E, Ottlé C, Vidal-madjar D (1999a) The ISBA surface scheme in a macroscale hydrological model applied to the HAPEX-MOBILHY area. Part I: model and database. J Hydrol 217:75–96
Habets F, Etchevers P, Golaz C, Leblois E, Ledoux E, Martin E, Noilhan J, Ottlé C (1999b) Simulation of the water budget and the river flows of the Rhône basin. J Geophys Res 104:31145–31172
King D, Lebas C, Jamagne M, Hardy R, Draoussin J (1995) Base de données géographiques des sols de France à l’échelle 1/1000000 (Geographical Soil Database for France at a scale of 1/1000000). Technical report, 100 pp, Institut National de Recherches Agronomiques (INRA), orleans, France
Koster DR, Oki T, Suarez MJ (1999), The off-line validation of land surface models: assessing success at the annual timescale. J Meteor Soc Jpn 77:257–263
Koster DR, Suarez MJ, Heiser M (2000a), Variability and predictability of precipitation at seasonal to interannual time-scales. Hydrometeorol 1:26–46
Koster DR, Suarez MJ, Ducharne A, Stieglitz M, Kumar P (2000b) A catchement-based approach to modeling land surface process in a general circulation model, 1, Model structure. J Geophys Res 105:24809–24822
Koster DR, Dirmeyer PA, Hahmann AN, Ijpelaar R, Tyahla L, Cox P, Suarez MJ (2002) Comparing the degree of land-atmosphere interaction in four atmospheric general circulation models. J Hydrometeorol 3:363–375
Lohmann D, Coauthors (1998) The Project for intercomparison of land-surface parameterization schemes (PILPS) Phase-2c Red-Arkansas River Bassin experiment: III. Spatial and temporal analysis of water fluxes. Global Planet Change 19:161–180
Lott F, Miller MJ (1997) A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart J R Meteor Soc 123:101–127
Mahfouf J-F, Manzi AO, Noilhan J, Giordani H, Déqué M (1995) The land surface scheme ISBA within the Météo-France climate model ARPEGE. Part I: Implementation and preliminary result. J Clim 8:2039–2057
Mahfouf J-F, Noilhan J (1996) Inclusion of gravitational drainage in a land surface scheme based on the force-restore method. J Appl Meteor 35:987–992
Manabe S (1969) Climate and ocean circulation 1. The atmospheric circulation and the hydrology of the earth’s surface. Mon Weather Rev 97:739–805
Masson V, Champeaux JL, Chauvin F, Mériguet C, Lacaze R (2003) A global database of land surface parameters at 1 km resolution for use in meteorological and climate models. J Clim 16:1261–1282
Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712
Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, 1, A discussion of principales. J Hydrol 10:282–290
Ngo-Duc T, Polcher J, Laval K (2005) A 53-year forcing data set for land surface models. J Geophys Res 110, D06116. DOI:10.1029/2004JD005434
Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536–549
Noilhan J, Mahfouf J-F (1996), The ISBA land surface parametrization scheme. Global Planet Change 13:145–159
Oki T, et Sud YC (1998), Design of total runoff integrating pathways (TRIP). A global river chanel network. Earth Interact 2:1−36. (http://www.EarthInteractions.org/)
Oki T, Nishimura T, Dirmeyer P (1999) Assessment of annual runoff from land surface models using total runoff integrating pathways (TRIP). J Meteor Soc Jpn 77:235–255
Robock A, Vinnikov KY, Srinivasan G, Entin JK, Hollinger SE, Speranskaya NA, Liu S, Namkhai A (2000) The Global Soil Moisture Data Bank. Bull. Amer. Meteorol. Soc 81:1281–1299
Sud YC, Mocko DM (1999) New snow-physics to complement SsiB Part I: Design and evaluation with ISLSCP Initiative I datasets. J Meteor Soc Jpn 77:335–348
Vérant S, Laval K, Polcher J, De Castro M (2004) Sensitivity of the continental hydrological cycle to the spatial resolution over the Iberian peninsulia. J Hydrometeorol 5:267–285
Wood EF, Coauthors (1998) The Project for intercomparaison of land–surface parameterization schemes (PILPS) Phase-2c Red-Arkansas River Basin experiment: I. Experiment description and summary intercomparisons. Global Planet Change 19:115–135
Wood EF, Lettenmaier DP, Zartarian VG (1992) A land-surface hydrology parameterization with subgrid variability for general circulation models. J Geophys Res 97:2717–2728
Xie, Arkin (1996), Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Clim 9:840–858
Yang D, Ohata T (2001) A bias-corrected siberian regional precipitation climatology. J Hydrometeorol 2:122–139
Yang D, Kane D, Zhang Z, Legates D, Goodison B (2005) Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys Res Lett 32, L19501. DOI:10.1029/2005GL024057
Ye B, Yang D, Ding Y, Han T, Koike T (2004) A bias-corrected precipitation climatology for China. J Hydrometeorol 5:1147–1160
Zhao RJ (1977) The Xinanjiang model applied in China. J Hydrol 134:317–381
Zhao M, Dirmeyer PA (2003) Production and analysis of GSWP-2 Near-Surface Meteorology Data Sets. COLA Technical report no 159 (Availabe online at http://www.grads.iges.org/gswp/), 36 pp, Center for Ocean-Land-Atmosphere studies, Calverton, US