Uncertainpy: A Python Toolbox for Uncertainty Quantification and Sensitivity Analysis in Computational Neuroscience
Tóm tắt
Từ khóa
Tài liệu tham khảo
Achard, 2006, Complex parameter landscape for a complex neuron model, PLoS Comput. Biol., 2, e94, 10.1371/journal.pcbi.0020094
Allken, 2014, The subcellular distribution of T-type Ca2+ channels in interneurons of the lateral geniculate nucleus, PLoS ONE, 10.1371/journal.pone.0107780
Babtie, 2017, How to deal with parameters for whole-cell modelling, J. R. Soc Interface, 14, 10.1098/rsif.2017.0237
Bahl, 2012, Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data, J. Neurosci. Methods, 210, 22, 10.1016/j.jneumeth.2012.04.006
Beck, 1987, Water quality modeling: a review of the analysis of uncertainty, Water Resour. Res., 23, 1393, 10.1029/WR023i008p01393
Beer, 1999, Evolution and analysis of model CPGs for walking: II. General principles and individual variability, J. Comput. Neurosci., 7, 119, 10.1023/A:1008920021246
Bhalla, 1993, Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb, J. Neurophysiol., 69, 1948, 10.1152/jn.1993.69.6.1948
Blomquist, 2009, Estimation of thalamocortical and intracortical network models from joint thalamic single-electrode and cortical laminar-electrode recordings in the rat barrel system, PLoS Comput. Biol., 5, e1000328, 10.1371/journal.pcbi.1000328
Blot, 2014, Ultra-rapid axon-axon ephaptic inhibition of cerebellar Purkinje cells by the pinceau, Nat. Neurosci., 17, 289, 10.1038/nn.3624
efel2015
Borgonovo, 2016, Sensitivity analysis: a review of recent advances, Eur. J. Oper. Res., 248, 869, 10.1016/j.ejor.2015.06.032
Brodland, 2015, How computational models can help unlock biological systems, Semin. Cell Dev. Biol., 62, 10.1016/j.semcdb.2015.07.001
Brunel, 2000, Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons, J. Comput. Neurosci., 8, 183, 10.1023/A:1008925309027
Campolongo, 2007, An effective screening design for sensitivity analysis of large models, Environ. Model. Softw., 22, 1509, 10.1016/j.envsoft.2006.10.004
Collette, 2013, Python and HDF5
Crestaux, 2009, Polynomial chaos expansion for sensitivity analysis, Reliabil. Eng. Syst. Saf., 94, 1161, 10.1016/j.ress.2008.10.008
Dayan, 2001, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems
De Schutter, 1994, An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses, J. Neurophysiol., 71, 401, 10.1152/jn.1994.71.1.401
Degenring, 2004, Sensitivity analysis for the reduction of complex metabolism models, J. Process Control, 14, 729, 10.1016/j.jprocont.2003.12.008
Dragly, 2018, Experimental directory structure (exdir): an alternative to hdf5 without introducing a new file format, Front. Neuroinformatics, 12, 16, 10.3389/fninf.2018.00016
Druckmann, 2007, A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data, Front. Neurosci., 1, 7, 10.3389/neuro.01.1.1.001.2007
Eck, 2016, A guide to uncertainty quantification and sensitivity analysis for cardiovascular applications, Int. J. Numer. Methods Biomed. Eng., 32, e02755, 10.1002/cnm.2755
Edelman, 2001, Degeneracy and complexity in biological systems, Proc. Natl. Acad. Sci. U.S.A., 98, 13763, 10.1073/pnas.231499798
Feinberg, 2015, Chaospy: an open source tool for designing methods of uncertainty quantification, J. Comput. Sci., 11, 46, 10.1016/j.jocs.2015.08.008
Ferson, 1996, Different methods are needed to propagate ignorance and variability, Reliabil. Eng. Syst. Saf., 54, 133, 10.1016/S0951-8320(96)00071-3
Ferson, 2004, Summary from the epistemic uncertainty workshop: Consensus amid diversity, Reliab. Eng. Syst. Saf., 85, 355, 10.1016/j.ress.2004.03.023
Garcia, 2014, Neo: an object model for handling electrophysiology data in multiple formats, Front. Neuroinformatics, 8, 10, 10.3389/fninf.2014.00010
Glen, 2012, Estimating Sobol sensitivity indices using correlations, Environ. Model. Softw., 37, 157, 10.1016/j.envsoft.2012.03.014
Goldman, 2001, Global structure, robustness, and modulation of neuronal models, J. Neurosci., 21, 5229, 10.1523/JNEUROSCI.21-14-05229.2001
Golowasch, 2002, Failure of averaging in the construction of a conductance-based neuron model, J. Neurophysiol., 87, 1129, 10.1152/jn.00412.2001
Gutenkunst, 2007, Universally sloppy parameter sensitivities in systems biology models, PLoS Comput. Biol., 3, 1871, 10.1371/journal.pcbi.0030189
Halnes, 2011, A multi-compartment model for interneurons in the dorsal lateral geniculate nucleus, PLoS Comput. Biol., 7, e1002160, 10.1371/journal.pcbi.1002160
Halnes, 2007, Density dependent neurodynamics, Biosystems, 89, 126, 10.1016/j.biosystems.2006.06.010
Halnes, 2009, Modelling and sensitivity analysis of the reactions involving receptor, G-protein and effector in vertebrate olfactory receptor neurons, J. Comput. Neurosci., 27, 471, 10.1007/s10827-009-0162-6
Hamby, 1994, A review of techniques for parameter sensitivity analysis of environmental models, Environ. Monit. Assess., 32, 135, 10.1007/BF00547132
Hammersley, 1960, Monte carlo methods for solving multivariable problems, Ann. N. Y. Acad. Sci., 86, 844, 10.1111/j.1749-6632.1960.tb42846.x
Hay, 2013, Preserving axosomatic spiking features despite diverse dendritic morphology, J. Neurophysiol., 109, 2972, 10.1152/jn.00048.2013
Herman, 2017, SALib: an open-source python library for sensitivity analysis, J. Open Source Softw., 2, 97, 10.21105/joss.00097
Hodgkin, 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117, 500, 10.1113/jphysiol.1952.sp004764
Homma, 1996, Importance measures in global sensitivity analysis of nonlinear models, Reliabil. Eng. Syst. Saf., 52, 1, 10.1016/0951-8320(96)00002-6
Hora, 1996, Aleatory and epistemic uncertainty in probability elicitation with an example from hazardous waste management, Reliabil. Eng. Syst. Saf., 54, 217, 10.1016/S0951-8320(96)00077-4
Hosder, 2007, Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables, 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 10.2514/6.2007-1939
Izhikevich, 2003, Simple model of spiking neurons, IEEE Trans. Neural Netw, 14, 1569, 10.1109/TNN.2003.820440
Izhikevich, 2008, Large-scale model of mammalian thalamocortical systems, Proc. Natl. Acad. Sci. U.S.A., 105, 3593, 10.1073/pnas.0712231105
Kiureghian, 2009, Aleatory or epistemic? Does it matter?, Struct. Saf., 31, 105, 10.1016/j.strusafe.2008.06.020
Koch, 1998, Methods in Neuronal Modeling: From Ions to Networks, 2nd Edn
Kuchibhotla, 2017, Parallel processing by cortical inhibition enables context-dependent behavior, Nat. Neurosci., 20, 62, 10.1038/nn.4436
Leamer, 1985, Sensitivity analyses would help, Am. Econ. Rev., 75, 308
Lemieux, 2009, Monte Carlo and Quasi-Monte Carlo Sampling. Springer Series in Statistics
Marder, 2006, Variability, compensation and homeostasis in neuron and network function, Nat. Rev. Neurosci., 7, 563, 10.1038/nrn1949
Marder, 2011, Multiple models to capture the variability in biological neurons and networks, Nat. Neurosci., 14, 133, 10.1038/nn.2735
Marino, 2008, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254, 178, 10.1016/j.jtbi.2008.04.011
Markram, 2015, Reconstruction and simulation of neocortical microcircuitry, Cell, 163, 456, 10.1016/j.cell.2015.09.029
Marx, 2009, Ab initio Molecular Dynamics: Basic Theory and Advanced Method, 10.1017/CBO9780511609633
McKerns, 2012, Building a framework for predictive science, CoRR, 1
Merolla, 2014, A million spiking-neuron integrated circuit with a scalable communication network and interface, Science, 345, 668, 10.1126/science.1254642
Morris, 1991, Factorial sampling plans for preliminary computational experiments, Technometrics, 33, 161, 10.1080/00401706.1991.10484804
Mullins, 2016, Separation of aleatory and epistemic uncertainty in probabilistic model validation, Reliabil. Eng. Syst. Saf., 147, 49, 10.1016/j.ress.2015.10.003
Najm, 2009, Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics, Annu. Rev. Fluid Mech., 41, 35, 10.1146/annurev.fluid.010908.165248
Narayan, 2014, Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional approximation, SIAM J. Sci. Comput., 36, A2952, 10.1137/140966368
Elephant - electrophysiology analysis toolkit2017
Oberkampf, 2002, Error and uncertainty in modeling and simulation, Reliabil. Eng. Syst. Saf., 75, 333, 10.1016/S0951-8320(01)00120-X
O'Donnell, 2017, Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders, eLife, 6, e26724, 10.7554/eLife.26724
Peyser, 2017, Nest 2.14.0
Prinz, 2004, Similar network activity from disparate circuit parameters, Nat. Neurosci., 7, 1345, 10.1038/nn1352
Rifkin, 2007, Notes on Regularized Least Squares
Rosenblatt, 1952, Remarks on a Multivariate Transformation, Ann. Math. Stat., 23, 470, 10.1214/aoms/1177729394
Rossa, 2011, The COST 731 Action: a review on uncertainty propagation in advanced hydro-meteorological forecast systems, Atmos. Res., 100, 150, 10.1016/j.atmosres.2010.11.016
Saltelli, , Making best use of model valuations to compute sensitivity indices, Comput. Phys. Commun., 145, 280, 10.1016/S0010-4655(02)00280-1
Saltelli, , Sensitivity analysis for importance assessment, Risk Anal., 22, 579, 10.1111/0272-4332.00040
Saltelli, 2010, Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Comput. Phys. Commun., 181, 259, 10.1016/j.cpc.2009.09.018
Schulz, 2007, Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression, Proc. Natl. Acad. Sci. U.S.A., 104, 13187, 10.1073/pnas.0705827104
Sharp, 2003, Qmu and nuclear weapons certification: What's under the hood?, Los Alamos Sci., 28, 47
Smolyak, 1963, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk SSSR, 148, 1042
Snowden, 2017, Methods of model reduction for large-scale biological systems: a survey of current methods and trends, Bull. Math. Biol., 79, 1449, 10.1007/s11538-017-0277-2
Sobol, 1967, On the distribution of points in a cube and the approximate evaluation of integrals, USSR Comput. Math. Math. Phys., 7, 86, 10.1016/0041-5553(67)90144-9
Sobol, 1990, Sensitivity analysis for nonlinear mathematical models, Matematicheskoe Modelirovanie, 2, 112
Stieltjes, 1884, Quelques recherches sur la théorie des quadratures dites mécaniques, Ann. Sci. 'École Normale Supérieure, 1, 409, 10.24033/asens.245
Sudret, 2008, Global sensitivity analysis using polynomial chaos expansions, Reliab. Eng. Syst. Saf., 93, 964, 10.1016/j.ress.2007.04.002
Taylor, 2009, How multiple conductances determine electrophysiological properties in a multicompartment model, J. Neurosci., 29, 5573, 10.1523/JNEUROSCI.4438-08.2009
Tobin, 2006, Endogenous and half-center bursting in morphologically inspired models of leech heart interneurons, J. Neurophysiol., 96, 2089, 10.1152/jn.00025.2006
Torres Valderrama, 2015, Uncertainty propagation in nerve impulses through the action potential mechanism, J. Math. Neurosci., 5, 3, 10.1186/2190-8567-5-3
Turanyi, 1990, Sensitivity analysis of comprex kinetic systems. Tools and applications, J. Math. Chem., 5, 203, 10.1007/BF01166355
Van Geit, 2008, Automated neuron model optimization techniques: A review, Biol. Cybern., 99, 241, 10.1007/s00422-008-0257-6
Wang, 2015, Combustion kinetic model uncertainty quantification, propagation and minimization, Prog. Energy Combust. Sci., 47, 1, 10.1016/j.pecs.2014.10.002
Xiu, 2010, Numerical Methods for Stochastic Computations: A Spectral Method Approach, 10.2307/j.ctv7h0skv
Xiu, 2005, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 1118, 10.1137/040615201
Yildirim, 2015, Stochastic simulations of ocean waves: an uncertainty quantification study, Ocean Model., 86, 15, 10.1016/j.ocemod.2014.12.001
Zhu, 1999, Burst firing in identified rat geniculate interneurons, Neuroscience, 91, 1445, 10.1016/S0306-4522(98)00665-4