Unbounded parallel-batching scheduling with two competitive agents

Journal of Scheduling - Tập 15 Số 5 - Trang 629-640 - 2012
Baoqiang Fan1, T.C.E. Cheng2, S. S. Li3, Qi Feng3
1Department of Mathematics and Information, Ludong University, Yantai, People's Republic of China 264025 and Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Kowl ...#TAB#
2Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong
3Department of Mathematics, Zhengzhou University, Zhengzhou, People's Republic of China 450001

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agnetis, A., Mirchandani, P. B., Pacciarelli, D., & Pacifici, A. (2004). Scheduling problems with two competing agents. Operations Research, 52, 229–242.

Agnetis, A., Pacciarelli, D., & Pacifici, A. (2007). Multi-agent single machine scheduling. Annals of Operations Research, 150, 3–15.

Agnetis, A., Pascale, G., & Pacciarelli, D. (2009). A Lagrangian approach to single-machine scheduling problems with two competing agents. Journal of Scheduling, 12, 401–415.

Baker, K. R., & Smith, J. C. (2003). A multiple-criterion model for machine scheduling. Journal of Scheduling, 6, 7–16.

Brucker, P. (2007). Scheduling algorithms (5th ed.). Berlin: Springer.

Brucker, P., Gladky, A., Hoogeveen, H., Kovalyov, M. Y., Potts, C. N., Tautenhahn, T., & van de Velde, S. L. (1998). Scheduling a batching machine. Journal of Scheduling, 1, 31–54.

Brucker, P., & Knust, S. (2009). Complexity results of scheduling problems. http://www.informatik.uni-osnabrueck.de/knust/class/ .

Cheng, T. C. E., Ng, C. T., & Yuan, J. J. (2006). Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs. Theoretical Computer Science, 362, 273–281.

Cheng, T. C. E., Ng, C. T., & Yuan, J. J. (2008). Multi-agent scheduling on a single machine with max-form criteria. European Journal of Operational Research, 188, 603–609.

Dobson, G., & Nambimadom, R. S. (2001). The batch loading and scheduling problem. Operations Research, 49, 52–65.

Fan, B. Q., Yuan, J. J., & Li, S. S. (2011). Bi-criteria scheduling on a single parallel-batch machine. Applied Mathematical Modelling. doi: 10.1016/j.apm.2011.07.084 .

Lee, C.-Y., Uzsoy, R., & Martin-Vega, L. A. (1992). Efficient algorithms for scheduling semi-conductor burn-in operations. Operations Research, 40, 764–775.

Leung, J. Y.-T., Pinedo, M., & Wan, G. (2010). Competitive two-agent scheduling and its applications. Operations Research, 58, 458–469.

Li, S. S., & Yuan, J. J. (2010). Parallel-machine parallel-batching scheduling with family jobs and release dates to minimize makespan. Journal of Combinatorial Optimization, 19, 84–93.

Mathirajan, M., & Sivakumar, A. I. (2006). A literature review, classification and simple meta-analysis on scheduling of batch processors in semiconductor. The International Journal of Advanced Manufacturing Technology, 29, 990–1001.

Mor, B., & Mosheiov, G. (2010). Scheduling problems with two competing agents to minimize minmax and minsum earliness measures. European Journal of Operational Research, 206, 540–546.

Ng, C. T., Cheng, T. C. E., & Yuan, J. J. (2006). A note on the complexity of the problem of two-agent scheduling on a single machine. Journal of Combinatorial Optimization, 12, 387–394.

Nong, Q. Q., Ng, C. T., & Cheng, T. C. E. (2008). The bounded single-machine parallel-batching scheduling problem with family jobs and release dates to minimize makespan. Operations Research Letters, 111, 435–440.

Potts, C. N., & Kovalyov, M. Y. (2000). Scheduling with batching: a review. European Journal of Operational Research, 120, 228–249.

Potts, C. N., Strusevich, V. A., & Tautenhahn, T. (2001). Scheduling batches with simultaneous job processing for two-machine shop problems. Journal of Scheduling, 4, 25–51.

Sabouni, M. T. Y., & Jolai, F. (2010). Optimal methods for batch processing problem with makespan and maximum lateness objectives. Applied Mathematical Modelling, 34, 314–324.

Wagelmans, A. P. M., & Gerodimos, A. E. (2000). Improved dynamic programs for some batching problems involving the maximum lateness criterion. Operations Research Letters, 27, 109–118.

Wan, G., Vakati, S. R., Leung, J. Y.-T., & Pinedo, M. (2010). Scheduling two agents with controllable processing times. European Journal of Operational Research, 205, 528–539.

Yuan, J. J., Liu, Z. H., Ng, C. T., & Cheng, T. C. E. (2004). The unbounded single machine parallel batch scheduling problem with family jobs and release dates to minimize makespan. Theoretical Computer Science, 320, 199–212.