Unbounded parallel-batching scheduling with two competitive agents
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agnetis, A., Mirchandani, P. B., Pacciarelli, D., & Pacifici, A. (2004). Scheduling problems with two competing agents. Operations Research, 52, 229–242.
Agnetis, A., Pacciarelli, D., & Pacifici, A. (2007). Multi-agent single machine scheduling. Annals of Operations Research, 150, 3–15.
Agnetis, A., Pascale, G., & Pacciarelli, D. (2009). A Lagrangian approach to single-machine scheduling problems with two competing agents. Journal of Scheduling, 12, 401–415.
Baker, K. R., & Smith, J. C. (2003). A multiple-criterion model for machine scheduling. Journal of Scheduling, 6, 7–16.
Brucker, P. (2007). Scheduling algorithms (5th ed.). Berlin: Springer.
Brucker, P., Gladky, A., Hoogeveen, H., Kovalyov, M. Y., Potts, C. N., Tautenhahn, T., & van de Velde, S. L. (1998). Scheduling a batching machine. Journal of Scheduling, 1, 31–54.
Brucker, P., & Knust, S. (2009). Complexity results of scheduling problems. http://www.informatik.uni-osnabrueck.de/knust/class/ .
Cheng, T. C. E., Ng, C. T., & Yuan, J. J. (2006). Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs. Theoretical Computer Science, 362, 273–281.
Cheng, T. C. E., Ng, C. T., & Yuan, J. J. (2008). Multi-agent scheduling on a single machine with max-form criteria. European Journal of Operational Research, 188, 603–609.
Dobson, G., & Nambimadom, R. S. (2001). The batch loading and scheduling problem. Operations Research, 49, 52–65.
Fan, B. Q., Yuan, J. J., & Li, S. S. (2011). Bi-criteria scheduling on a single parallel-batch machine. Applied Mathematical Modelling. doi: 10.1016/j.apm.2011.07.084 .
Lee, C.-Y., Uzsoy, R., & Martin-Vega, L. A. (1992). Efficient algorithms for scheduling semi-conductor burn-in operations. Operations Research, 40, 764–775.
Leung, J. Y.-T., Pinedo, M., & Wan, G. (2010). Competitive two-agent scheduling and its applications. Operations Research, 58, 458–469.
Li, S. S., & Yuan, J. J. (2010). Parallel-machine parallel-batching scheduling with family jobs and release dates to minimize makespan. Journal of Combinatorial Optimization, 19, 84–93.
Mathirajan, M., & Sivakumar, A. I. (2006). A literature review, classification and simple meta-analysis on scheduling of batch processors in semiconductor. The International Journal of Advanced Manufacturing Technology, 29, 990–1001.
Mor, B., & Mosheiov, G. (2010). Scheduling problems with two competing agents to minimize minmax and minsum earliness measures. European Journal of Operational Research, 206, 540–546.
Ng, C. T., Cheng, T. C. E., & Yuan, J. J. (2006). A note on the complexity of the problem of two-agent scheduling on a single machine. Journal of Combinatorial Optimization, 12, 387–394.
Nong, Q. Q., Ng, C. T., & Cheng, T. C. E. (2008). The bounded single-machine parallel-batching scheduling problem with family jobs and release dates to minimize makespan. Operations Research Letters, 111, 435–440.
Potts, C. N., & Kovalyov, M. Y. (2000). Scheduling with batching: a review. European Journal of Operational Research, 120, 228–249.
Potts, C. N., Strusevich, V. A., & Tautenhahn, T. (2001). Scheduling batches with simultaneous job processing for two-machine shop problems. Journal of Scheduling, 4, 25–51.
Sabouni, M. T. Y., & Jolai, F. (2010). Optimal methods for batch processing problem with makespan and maximum lateness objectives. Applied Mathematical Modelling, 34, 314–324.
Wagelmans, A. P. M., & Gerodimos, A. E. (2000). Improved dynamic programs for some batching problems involving the maximum lateness criterion. Operations Research Letters, 27, 109–118.
Wan, G., Vakati, S. R., Leung, J. Y.-T., & Pinedo, M. (2010). Scheduling two agents with controllable processing times. European Journal of Operational Research, 205, 528–539.