Unbiased phenotypic identification of functionally distinct hematopoietic progenitors
Tóm tắt
Hematopoiesis is a model-system for studying cellular development and differentiation. Phenotypic and functional characterization of hematopoietic progenitors has significantly aided our understanding of the mechanisms that govern fate choice, lineage specification and maturity. Methods for progenitor isolation have historically relied on complex flow-cytometric strategies based on nested, arbitrary gates within defined panels of immunophenotypic markers. The resulted populations are then functionally assessed, although functional homogeneity or absolute linkage between function and phenotype is not always achieved, thus distorting our view on progenitor biology. In this study, we present a protocol for unbiased phenotypic identification and functional characterization which combines index sorting and clonogenic assessment of individual progenitor cells. Single-cells are plated into custom media allowing multiple hematopoietic fates to emerge and are allowed to give rise to unilineage colonies or mixed. After colony identification, lineage potential is assigned to each progenitor and finally the indexed phenotype of the initial cell is recalled and a phenotype is assigned to each functional output. Our approach overcomes the limitations of the current protocols expanding beyond the established cell-surface marker panels and abolishing the need for nested gating. Using this method we were able to resolve the relationships of myeloid progenitors according to the revised model of hematopoiesis, as well as identify a novel marker for erythroid progenitors. Finally, this protocol can be applied to the characterization of any progenitor cell with measurable function.
Tài liệu tham khảo
Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell niology. Cell. 2008;132:631–44.
Manz MG, Miyamoto T, Akashi K, Weissman IL. Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci USA. 2002. https://doi.org/10.1073/pnas.172384399.
Mori Y, Chen JY, Pluvinage JV, Seita J, Weissman IL. Prospective isolation of human erythroid lineage-committed progenitors. Proc Natl Acad Sci USA. 2015. https://doi.org/10.1073/pnas.1512076112.
Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000. https://doi.org/10.1038/35004599.
Notta F, Zandi S, Takayama N, Dobson S, Gan OI, Wilson G, et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science. 2016. https://doi.org/10.1126/science.aab2116.
Sanada C, Xavier-Ferrucio J, Lu Y-C, Min E, Zhang P-X, Zou S, et al. Adult human megakaryocyte-erythroid progenitors are in the CD34 + CD38mid fraction. Blood. 2016. https://doi.org/10.1182/blood-2016-01-693705.
Doulatov S, Notta F, Eppert K, Nguyen LT, Ohashi PS, Dick JE. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol. 2010. https://doi.org/10.1038/ni.1889.
Görgens A, Radtke S, Möllmann M, Cross M, Dürig J, Horn PA, et al. Revision of the human hematopoietic tree: granulocyte subtypes derive from distinct hematopoietic lineages. Cell Rep. 2013. https://doi.org/10.1016/j.celrep.2013.04.025.
Nishikii H, Kanazawa Y, Umemoto T, Goltsev Y, Matsuzaki Y, Matsushita K, et al. Unipotent megakaryopoietic pathway bridging hematopoietic stem cells and mature megakaryocytes. Stem Cells. 2015. https://doi.org/10.1002/stem.1985.
Psatha N, Georgolopoulos G, Phelps S, Papayannopoulou T. Brief report: a differential transcriptomic profile of ex vivo expanded adult human hematopoietic stem cells empowers them for engraftment better than their surface phenotype. Stem Cells Transl Med. 2017. https://doi.org/10.1002/sctm.17-0048.
Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci USA. 2005. https://doi.org/10.1073/pnas.0503280102.
Harder KW, Quilici C, Naik E, Inglese M, Kountouri N, Turner A, et al. Perturbed myelo/erythropoiesis in Lyn-deficient mice is similar to that in mice lacking the inhibitory phosphatases SHP-1 and SHIP-1. Blood. 2004. https://doi.org/10.1182/blood-2003-12-4396.
Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I, Dick JE. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science. 2011. https://doi.org/10.1126/science.1201219.
Petzer AL, Hogge DE, Landsdorp PM, Reid DS, Eaves CJ. Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium. Proc Natl Acad Sci USA. 1996. https://doi.org/10.1073/pnas.93.4.1470.
Papayannopoulou T, Brice M, Broudy V, Zsebo KM. Isolation of c-kit receptor-expressing cells from bone marrow, peripheral blood, and fetal liver: functional properties and composite antigenic profile. Blood. 1991;78:1403–12.
Freyssinier JM, Lecoq-Lafon C, Amsellem S, Picard F, Ducrocq R, Mayeux P, et al. Purification, amplification and characterization of a population of human erythroid progenitors. Br J Haematol. 1999;106:912–22.
Papayannopoulou T, Brice M, Farrer D, Kaushansky K. Insights into the cellular mechanisms of erythropoietin–thrombopoietin synergy. Exp Hematol. 1996;24:660–9.
Gahmberg C, Jokinen M, Andersson LC. Expression of the major sialoglycoprotein (glycophorin) on erythroid cells in human bone marrow. Blood. 1978;52:379–87.
Rabellino EM, Levene RB, Leung LLK, Nachman RL. Human megakaryocytes. II. Expression of platelet proteins in early marrow megakaryocytes. J Exp Med. 1981;154:88–100.
Edvardsson L, Dykes J, Olofsson T. Isolation and characterization of human myeloid progenitor populations—TpoR as discriminator between common myeloid and megakaryocyte/erythroid progenitors. Exp Hematol. 2006. https://doi.org/10.1016/j.exphem.2006.01.017.
Kitamura T, Miyajima A. Functional reconstitution of the human interleukin-3 receptor. Blood. 1992;80:84–90.
Metcalf D, Nicola NA. Direct proliferative actions of stem cell factor on murine bone marrow cells in vitro: effects of combination with colony-stimulating factors. Proc Natl Acad Sci USA. 1991. https://doi.org/10.1073/pnas.88.14.6239.
Huang S, Chen Z, Yu JF, Young D, Bashey A, Ho AD, et al. Correlation between IL-3 receptor expression and growth potential of human CD34+ hematopoietic cells from different tissues. Stem Cells. 1999. https://doi.org/10.1002/stem.170265.
Militi S, Riccioni R, Parolini I, Sposi NM, Samoggia P, Pelosi E, et al. Expression of interleukin 3 and granulocyte–macrophage colony-stimulating factor receptor common chain βc, βIT in normal haematopoiesis: lineage specificity and proliferation-independent induction. Br J Haematol. 2008. https://doi.org/10.1111/j.1365-2141.2000.02348.x.
Hao QL, Shah AJ, Thiemann FT, Smogorzewska EM, Crooks GM. A functional comparison of CD34+ CD38− cells in cord blood and bone marrow. Blood. 1995;86:3745–53.
Wu AG, Michejda M, Mazumder A, Meehan KR, Menendez FA, Tchabo J-G, et al. Analysis and characterization of hematopoietic progenitor cells from fetal bone marrow, adult bone marrow, peripheral blood, and cord blood. Pediatr Res. 1999;46:163–9.
Klco JM, Spencer DH, Miller CA, Griffith M, Lamprecht TL, O’Laughlin M, et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell. 2014. https://doi.org/10.1016/j.ccr.2014.01.031.
George AA, Franklin J, Kerkof K, Shah AJ, Price M, Tsark E, et al. Detection of leukemic cells in the CD34(+)CD38(−) bone marrow progenitor population in children with acute lymphoblastic leukemia. Blood. 2001. https://doi.org/10.1182/blood.v97.12.3925.
Udomsakdi C, Eaves CJ, Lansdorp PM, Eaves AC. Phenotypic heterogeneity of primitive leukemic hematopoietic cells in patients with chronic myeloid leukemia. Blood. 1992;80:2522–30.