Unbiased complex Hadamard matrices and bases

Darcy Best1, Hadi Kharaghani1
1Department of Mathematics & Computer Science, University of Lethbridge, Lethbridge, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Boykin, P.O., Sitharam, M., Tarifi, M., Wocjan, P.: Real mutually unbiased bases. Preprint. arXiv:quant-ph/0502024v2 [math.CO] (2005) (revised version dated Feb. 1, 2008)

Cameron, P.J., Seidel, J.J.: Quadratic forms over GF(2). Nederl. Akad. Wetensch. Proc. Ser. A 76. Indag. Math. 35, 1–8 (1973)

Godsil, C., Roy, A.: Equiangular lines, mutually unbiased bases, and spin models. Eur. J. Comb. 30, 246–262 (2009)

Holzmann, W., Kharaghani, H., Orrick, W.: On real unbiased Hadamard matrices. In: Proceedings of the IPM-20 Combinatories Conference, Tehran, Iran, May 2009, AMS Comtemporary Mathematics (2010)

LeCompte, N., Martin, W.J., Owens, W.: On the equivalence between real mutually unbiased bases and a certain class of association schemes. Eur. J. Comb. (2010, in press). doi: 10.1016/j.ejc.2009.11.014

Kharaghani, H., Seberry, J.: The excess of complex Hadamard matrices. Graphs Comb. 9 , 47–56 (1993)

Seberry, J., Yamada, M.: Hadamard matrices, sequences, and block designs. In: Dinitz, J.H., Stinson, D.R. (eds.) Contemporary Design Theory: A Collection of Surveys, pp. 431–560. Wiley, New York (1992)

Tadej, W., Zyczkowski, K.: A concise guide to complex Hadamard matrices. Open Syst. Inf. Dyn. 13, 133–177 (2006)

Wocjan, P., Beth, T.: New construction of mutually unbiased bases in square dimensions. Quant. Inf. Comput. 5, 93–101 (2005)