Unbiased Mitoproteome Analyses Confirm Non-canonical RNA, Expanded Codon Translations
Tài liệu tham khảo
Popov, 1996, Linguistic complexity of protein sequences as compared to texts of human languages, Biosystems, 38, 65, 10.1016/0303-2647(95)01568-X
AbouHaidar, 2014, Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220nt, Proc Natl Acad Sci U S A, 111, 14542, 10.1073/pnas.1402814111
Arquès, 1996, A complementary circular code in the protein coding genes, J Theor Biol, 182, 45, 10.1006/jtbi.1996.0142
Ahmed, 2007, Frameshift signals in genes associated with the circular code, In Silico Biol, 7, 155
Ahmed, 2010, Essential molecular functions associated with the circular code evolution, J Theor Biol, 264, 613, 10.1016/j.jtbi.2010.02.006
Michel, 2012, Circular code motifs in transfer and 16S ribosomal RNAs: a possible translation code in genes, Comput Biol Chem, 37, 24, 10.1016/j.compbiolchem.2011.10.002
Michel, 2013, Circular code motifs in transfer RNAs, Comput Biol Chem, 45, 17, 10.1016/j.compbiolchem.2013.02.004
El Soufi, 2014, Circular code motifs in the ribosome decoding center, Comput Biol Chem, 52, 9, 10.1016/j.compbiolchem.2014.08.001
El Soufi, 2015, Circular code motifs near the ribosome decoding center, Comput Biol Chem, 59a, 158, 10.1016/j.compbiolchem.2015.07.015
El Soufi, 2016, Circular code motifs in genomes of eukaryotes, J Theor Biol, 408, 198, 10.1016/j.jtbi.2016.07.022
Itzovitz, 2007, The genetic code is nearly optimal for allowing additional information within protein-coding sequences, Genome Res, 17, 405, 10.1101/gr.5987307
Seligmann, 2003
Seligmann, 2004, The ambush hypothesis: hidden stops prevent off-frame gene reading, DNA Cell Biol, 23, 701, 10.1089/dna.2004.23.701
Seligmann, 2007, Cost minimization of ribosomal frameshifts, J Theor Biol, 249, 162, 10.1016/j.jtbi.2007.07.007
Seligmann, 2010, The ambush hypothesis at the whole organism level: off frame, ‘hidden’ stops in vertebrate mitochondrial genes increase developmental stability, Comput Biol Chem, 34, 80, 10.1016/j.compbiolchem.2010.03.001
Seligmann, 2012, Coding constraints modulate chemically spontaneous mutational replication gradients in mitochondrial genomes, Curr Genomics, 13, 37, 10.2174/138920212799034802
Jestin, 2007, Symmetries by base substitutions in the genetic code predict 2(′) or 3(′) aminoacylation of tRNAs, J Theor Biol, 247, 391, 10.1016/j.jtbi.2007.03.008
Jestin, 2010, A rationale for the symmetries by base substitutions of degeneracy in the genetic code, Biosystems, 99, 1, 10.1016/j.biosystems.2009.07.009
Fimmel, 2015, Dinucleotide circular codes and bijective transformations, J Theor Biol, 386, 159, 10.1016/j.jtbi.2015.08.034
Gumbel, 2015, On models of the genetic code generated by binary dichotomic algorithms, Biosystems, 128, 9, 10.1016/j.biosystems.2014.12.001
Kozyrev, 2010, 2-Adic numbers in genetics and Rumer's symmetry, Dokl Math, 81, 128, 10.1134/S1064562410010357
Seligmann, 2015, Codon expansion and systematic transcriptional deletions produce tetra-, pentacoded mitochondrial peptides, J Theor Biol, 387, 154, 10.1016/j.jtbi.2015.09.030
Seligmann, 2016, Translation of mitochondrial swinger RNAs according to tri-, tetra- and pentacodons, Biosystems, 140, 38, 10.1016/j.biosystems.2015.11.009
Li, 2011, Widespread RNA and DNA sequence differences in the human transcriptome, Science, 333, 53, 10.1126/science.1207018
Bar-Yaacov, 2013, RNA–DNA differences in human mitochondria restore ancestral form of 16S ribosomal RNA, Genome Res, 23, 1789, 10.1101/gr.161265.113
Hodgkinson, 2014, High resolution genomic analysis of human mitochondrial RNA sequence variation, Science, 344, 413, 10.1126/science.1251110
Moreira, 2016, Novel modes of RNA editing in mitochondria, Nucleic Acids Res, 44, 4907, 10.1093/nar/gkw188
Chen, 2012, Systematic investigation of insertional and deletional RNA–DNA differences in the human transcriptome, BMC Genomics, 13, 616, 10.1186/1471-2164-13-616
Wang, 2014, RNA–DNA differences are generated in human cells within seconds after RNA exits polymerase II, Cell Rep, 6, 906, 10.1016/j.celrep.2014.01.037
Seligmann, 2012, Overlapping genes coded in the 3′-to-5′-direction in mitochondrial genes and 3′-to-5′ polymerization of non-complementary RNA by an ‘invertase’, J Theor Biol, 318, 38, 10.1016/j.jtbi.2012.08.044
Seligmann, 2013, Polymerization of non-complementary RNA: systematic symmetric nucleotide exchanges mainly involving uracil produce mitochondrial RNA transcripts coding for cryptic overlapping genes, Biosystems, 111, 156, 10.1016/j.biosystems.2013.01.011
Seligmann, 2013, Systematic asymmetric nucleotide exchanges produce human mitochondrial RNAs cryptically encoding for overlapping protein coding genes, J Theor Biol, 324, 1, 10.1016/j.jtbi.2013.01.024
Seligmann, 2013, Triplex DNA:RNA, 3′-to-5′ inverted RNA and protein coding in mitochondrial genomes, J Comput Biol, 20, 1, 10.1089/cmb.2012.0134
Michel, 2014, Bijective transformation circular codes and nucleotide exchanging RNA transcription, Biosystems, 118, 39, 10.1016/j.biosystems.2014.02.002
Seligmann, 2015, Swinger RNAs with sharp switches between regular transcription and transcription systematically exchanging ribonucleotides: case studies, Biosystems, 135, 1, 10.1016/j.biosystems.2015.07.003
Seligmann, 2016, Chimeric peptides from contiguous regular and swinger RNA, Comput Struct Biotechnol J, 14, 283, 10.1016/j.csbj.2016.06.005
Seligmann, 2016, Systematically frameshifting by deletion of every 4th or 4th and 5th nucleotides during mitochondrial transcription: RNA self-hybridization regulates delRNA expression, Biosystems, 142, 43, 10.1016/j.biosystems.2016.03.009
Seligmann, 2014, Mitochondrial swinger replication: DNA replication systematically exchanging nucleotides and short 16S ribosomal DNA swinger inserts, Biosystems, 125, 22, 10.1016/j.biosystems.2014.09.012
Seligmann, 2014, Species radiation by DNA replication that systematically exchanges nucleotides?, J Theor Biol, 363, 216, 10.1016/j.jtbi.2014.08.036
Seligmann, 2015, Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides A↔T+C↔G in the mitogenome of Kamimuria wangi. Mitochondrial DNA a DNA Mapp, Seq Anal, 27, 2440
Seligmann, 2015, Systematic exchanges between nucleotides: genomic swinger repeats and swinger transcription in human mitochondria, J Theor Biol, 384, 70, 10.1016/j.jtbi.2015.07.036
Seligmann, 2016, Swinger RNA self-hybridization and mitochondrial non-canonical swinger transcription, transcription systematically exchanging nucleotides, J Theor Biol, 399, 84, 10.1016/j.jtbi.2016.04.007
Ojala, 1981, tRNA punctuation model of RNA processing in human mitochondria, Nature, 290, 470, 10.1038/290470a0
Michel, 2010, Identification of all trinucleotide circular codes, Comput Biol Chem, 34, 122, 10.1016/j.compbiolchem.2010.03.004
Michel, 2015, The maximal C(3) self-complementary trinucleotide circular code X in genes of bacteria, eukaryotes, plasmids and viruses, J Theor Biol, 380, 156, 10.1016/j.jtbi.2015.04.009
Clayton, 1982, Replication of animal mitochondrial DNA, Cell, 28, 693, 10.1016/0092-8674(82)90049-6
Hixson, 1986, Both the conserved stem-loop and divergent 5′-flanking sequences are required for initiation at the human mitochondrial origin of light-strand DNA replication, J Biol Chem, 261, 2384, 10.1016/S0021-9258(17)35948-3
Wanrooij, 1797, The human mitochondrial replication fork in health and disease, Biochim Biophys Acta, 2010, 1378
Desjardins, 1991, Nucleotide sequence and evolution of coding and noncoding regions of a quail mitochondrial genome, J Mol Evol, 32, 153, 10.1007/BF02515387
Seligmann, 2006, Mitochondrial replication origin stability and propensity of adjacent tRNA genes to form putative replication origins increase developmental stability in lizards, J Exp Zool B Mol Dev Evol, 306, 433, 10.1002/jez.b.21095
Seligmann, 2006, Possible multiple origins of replication in primate mitochondria: alternative role of tRNA sequences, J Theor Biol, 241, 321, 10.1016/j.jtbi.2005.11.035
Seligmann, 2006, Mitochondrial tRNA sequences as unusual replication origins: pathogenic implications for Homo sapiens, J Theor Biol, 243, 375, 10.1016/j.jtbi.2006.06.028
Seligmann, 2008, Hybridization between mitochondrial heavy strand tDNA and expressed light strand tRNA modulates the function of heavy strand tDNA as light strand replication origin, J Mol Biol, 379, 188, 10.1016/j.jmb.2008.03.066
Seligmann, 2010, Mitochondrial tRNAs as light strand replication origins: similarity between anticodon loops and the loop of the light strand replication origin predicts initiation of DNA replication, Biosystems, 99, 85, 10.1016/j.biosystems.2009.09.003
Seligmann, 2011, Pathogenic mutations in antisense mitochondrial tRNAs, J Theor Biol, 269, 287, 10.1016/j.jtbi.2010.11.007
Seligmann, 2013, Pocketknife tRNA hypothesis: anticodons in mammal mitochondrial tRNA side-arm loops translate proteins?, Biosystems, 113, 165, 10.1016/j.biosystems.2013.07.004
Seligmann, 2014, Putative anticodons in mitochondrial tRNA sidearm loops: pocketknife tRNAs?, J Theor Biol, 340, 155, 10.1016/j.jtbi.2013.08.030
Seligmann, 2014, The relation between hairpin formation by mitochondrial WANCY tRNAs and the occurrence of the light strand replication origin in Lepidosauria, Gene, 542, 248, 10.1016/j.gene.2014.02.021
Yu, 2008, The rat mitochondrial Ori L encodes a novel small RNA resembling an ancestral tRNA, Biochem Biophys Res Commun, 372, 634, 10.1016/j.bbrc.2008.05.092
Maizels, 1994, Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation, Proc Natl Acad Sci U S A, 91, 6729, 10.1073/pnas.91.15.6729
Maizels, 1995, Phylogeny from function: the origin of tRNA is in replication, not translation. Chapter 2, 25
Seligmann, 2016, Unifying view of stem-loop hairpin RNA as origin of current and ancient parasitic and non-parasitic RNAs, including in giant viruses, Curr Opin Microbiol, 31, 1, 10.1016/j.mib.2015.11.004
Capone, 1985, Amber, ochre and opal suppressor tRNA genes derived from a human serine tRNA gene, EMBO J, 4, 213, 10.1002/j.1460-2075.1985.tb02338.x
Beier, 2001, Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs, Nucleic Acids Res, 29, 4767, 10.1093/nar/29.23.4767
Seligmann, 2010, Avoidance of antisense antiterminator tRNA anticodons in vertebrate mitochondria, Biosystems, 101, 42, 10.1016/j.biosystems.2010.04.004
Seligmann, 2010, Undetected antisense tRNAs in mitochondria?, Biol Direct, 5, 39, 10.1186/1745-6150-5-39
Seligmann, 2011, Two genetic codes, one genome: frameshifted primate mitochondrial genes code for additional proteins in presence of antisense antitermination tRNAs, Biosystems, 105, 271, 10.1016/j.biosystems.2011.05.010
Seligmann, 2013, Putative protein-encoding genes within mitochondrial rDNA and the D-loop region, 67
Seligmann, 2012, An overlapping genetic code for frameshifted overlapping genes in Drosophila mitochondria: antisense antitermination tRNAs UAR insert serine, J Theor Biol, 298, 51, 10.1016/j.jtbi.2011.12.026
Seligmann, 2012, Overlapping genetic codes for overlapping frameshifted genes in Testudines, and Lepidochelys olivacea as a special case, Comput Biol Chem, 41, 18, 10.1016/j.compbiolchem.2012.08.002
Barthélémy, 2016, Cryptic tRNAs in chaetognath mitochondrial genomes. Cryptic tRNAs in chaetognath mitochondrial genomes, Comput Biol Chem, 62, 119, 10.1016/j.compbiolchem.2016.04.007
Massey, 2007, A comparative genomics analysis of codon reassignments reveals a link with mitochondrial proteome size and a mechanism of genetic code change via suppressor tRNAs, J Mol Evol, 64, 399, 10.1007/s00239-005-0260-7
Seligmann, 2015, Phylogeny of genetic codes and punctuation codes within genetic codes, Biosystems, 129, 36, 10.1016/j.biosystems.2015.01.003
Knight, 2001, How mitochondria redefine the code, J Mol Evol, 53, 299, 10.1007/s002390010220
Sengupta, 2007, The mechanisms of codon reassignments in mitochondrial genetic codes, J Mol Evol, 64, 662, 10.1007/s00239-006-0284-7
Ring, 2008, Consequences of stop codon reassignment on protein evolution in ciliates with alternative genetic codes, Mol Biol Evol, 25, 179, 10.1093/molbev/msm237
Vallabhaneni, 2009, Connection between stop codon reassignment and frequent use of shifty stop frameshifting, RNA, 15, 889, 10.1261/rna.1508109
Johnson, 2010, Pseudogene rescue: an adaptive mechanism of codon reassignment, J Evol Biol, 23, 1623, 10.1111/j.1420-9101.2010.02027.x
Johnson, 2011, Stops making sense: translational trade-offs and stop codon reassignment, BMC Evol Biol, 11, 227, 10.1186/1471-2148-11-227
Campbell, 2013, UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota, Proc Natl Acad Sci U S A, 110, 5540, 10.1073/pnas.1303090110
Ivanova, 2014, Stop codon reassignment in the wild, Science, 344, 909, 10.1126/science.1250691
Seligmann, 2012, Putative mitochondrial polypeptides coded by expanded quadruplet codons, decoded by antisense tRNAs with unusual anticodons, Biosystems, 110, 84, 10.1016/j.biosystems.2012.09.002
Seligmann, 2013, Tetracoding increases with body temperature in Lepidosauria, Biosystems, 114, 155, 10.1016/j.biosystems.2013.09.002
Riddle, 1972, Frameshift suppressors. 3. Effects of suppressor mutations on transfer RNA, J Mol Biol, 66, 495, 10.1016/0022-2836(72)90429-9
O'Connor, 1989, tRNA hopping: enhancement by an expanded anticodon, EMBO J, 8, 4315, 10.1002/j.1460-2075.1989.tb08618.x
Tuohy, 1992, Seven, eight and nine-membered anticodon loop mutants of tRNA(2Arg) which cause +1 frameshifting. Tolerance of DHU arm and other secondary mutations, J Mol Biol, 228, 1042, 10.1016/0022-2836(92)90313-9
Walker, 2006, Recognition and positioning of mRNA in the ribosome by tRNAs with expanded anticodons, J Mol Biol, 360, 599, 10.1016/j.jmb.2006.05.006
Dunham, 2007, Structures of tRNAs with an expanded anticodon loop in the decoding center of the 30S ribosomal subunit, RNA, 13, 817, 10.1261/rna.367307
Maehigashi, 2014, Strucural insights into +1 frameshifting promoted by expanded or modification-deficient anticodon stem loops, Proc Natl Acad Sci U S A, 111, 12740, 10.1073/pnas.1409436111
Beznosková, 2016, Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast, RNA, 22, 456, 10.1261/rna.054452.115
Gonzalez, 2012, On the origin of the mitochondrial genetic code: towards a unified mathematical framework for the management of genetic information
Baranov, 2009, Codon size reduction as the origin of the triplet genetic code, PLoS One, 4, e5708, 10.1371/journal.pone.0005708
Root-Bernstein, 2015, The ribosome as a missing link in the evolution of life, J Theor Biol, 367, 130, 10.1016/j.jtbi.2014.11.025
Root-Bernstein, 2016, The ribosome as a missing link in prebiotic evolution II: ribosomes encode ribosomal proteins that bind to common regions of their own mRNAs and rRNAs, J Theor Biol, 397, 115, 10.1016/j.jtbi.2016.02.030
Kowalczewska, 2009, Global proteomic pattern of Tropheryma whipplei: a Whipple's disease bacterium, Proteomics, 9, 1593, 10.1002/pmic.200700889
Guerra, 2011, Comparison between supervised and unsupervised classifications of neuronal cell types: a case study, Dev Neurobiol, 71, 71, 10.1002/dneu.20809
Brazma, 2000, Gene expression data analysis, FEBS Lett, 480, 17, 10.1016/S0014-5793(00)01772-5
Causton, 2003, Analysis of gene expression data matrices. Chapter 4, 72
Paik, 2006, Evolving role of pathology in modern oncology. Chapter 2, 17
Efron, 1975, Biased versus unbiased estimation, Adv Math, 16, 259, 10.1016/0001-8708(75)90114-0
Quirós, 2015, New roles for mitochondrial proteases in health, ageing and disease, Nat Rev Mol Cell Biol, 16, 345, 10.1038/nrm3984
Timerbaev, 1998, Inorganic analysis and speciation. Chapter 22, 963
Abonnenc, 2012, Proteomics of atherosclerosis. Chapter 13, 249
Piatkov, 2014, Calpain-generated natural protein fragments as short-lived substrates of the N-end rule pathway, Proc Natl Acad Sci U S A, 111, E817, 10.1073/pnas.1401639111
Schmidt, 1975, Effect of elastase-like and chymotrypsin-like natural proteases from human granulocytes on isolated clotting factor XIII, Thromb Res, 6, 315, 10.1016/0049-3848(75)90081-X
Andrews, 1983, Proteolysis of caseins and the proteose-peptone fraction of bovine milk, J Dairy Res, 50, 275, 10.1017/S0022029900023116
Rietschel, 2009, Elastase digests. New ammunition for shotgun membrane proteomics, Mol Cell Proteomics, 8, 1029, 10.1074/mcp.M800223-MCP200
Wildes, 2010, Sampling the N-terminal proteome of human blood, Proc Natl Acad Sci U S A, 107, 4561, 10.1073/pnas.0914495107
Leonelli, 2011, Structural elucidation and functional characterization of the Hyaloperonospora arabidopsidis effector protein ATR13, PLoS Pathog, 7, e1002428, 10.1371/journal.ppat.1002428
Venter, 2011, Proteogenomic analysis of bacteria and Archaea: a 46 organism case study, PLoS One, 6, e27587, 10.1371/journal.pone.0027587
Volkmann, 2012, Site-specific protein cleavage in vivo by an intein-derived protease, FEBS Lett, 586, 79, 10.1016/j.febslet.2011.11.028
Gueugneau, 2014, Proteomics of muscle chronological ageing in post-menopausal women, BMC Genomics, 15, 1165, 10.1186/1471-2164-15-1165
Garzon, 2014, Expression and prognostic impact of lncRNAs in acute myeloid leukemia, Proc Natl Acad Sci U S A, 111, 18679, 10.1073/pnas.1422050112
Lobanov, 2010, Dual functions of codons in the genetic code, Crit Rev Biochem Mol Biol, 45, 257, 10.3109/10409231003786094
O'Donoghue, 2012, Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion, FEBS Lett, 583, 3931, 10.1016/j.febslet.2012.09.033
Odoi, 2013, Nonsense and sense suppression abilities of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNA(Pyl) pairs in the Escherichia coli BL21(DE3) cell strain, PLoS One, 8, e57035, 10.1371/journal.pone.0057035
Käll, 2008, Posterior error probabilities and false discovery rates: two sides of the same coin, J Proteome Res, 7, 40, 10.1021/pr700739d
Brosch, 2009, Accurate and sensitive peptide identification with MascotPercolator, J Proteome Res, 8, 3176, 10.1021/pr800982s
Spivak, 2009, Improvements to the percolator algorithm for peptide identification from shotgun proteomics data sets, J Proteome Res, 8, 3737, 10.1021/pr801109k
Eng, 1994, An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database, J Am Soc Mass Spectrom, 5, 976, 10.1016/1044-0305(94)80016-2
Fisher, 1648, Combining independent tests of significance, Am Stat, 2, 30
Seligmann, 2016, Natural chymotrypsin-like-cleaved human mitochondrial peptides confirm tetra-, pentacodon, non-canonical RNA translations, Biosystems, 147, 78, 10.1016/j.biosystems.2016.07.010
Altschul, 1997, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, 25, 3389, 10.1093/nar/25.17.3389
Lopez, 1994, Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat, J Mol Evol, 39, 174, 10.1007/BF00163806
Lopez, 1997, Rates of nuclear and cytoplasmic mitochondrial DNA sequence divergence in mammals, Mol Biol Evol, 14, 277, 10.1093/oxfordjournals.molbev.a025763
Lopez, 1997, The long and short nuclear mitochondrial DNA (Numt) lineages, Trends Ecol Evol, 12, 114, 10.1016/S0169-5347(97)84925-7
Zhang, 1997, The long and short of nuclear mitochondrial DNA (Numt) lineages reply from D-X, Trends Ecol Evol, 12, 114, 10.1016/S0169-5347(97)84926-9
Bensasson, 2001, Mitochondrial pseudogenes: evolution's misplaces witnesses, Trends Ecol Evol, 16, 314, 10.1016/S0169-5347(01)02151-6
Tourmen, 2002, Structure and chromosomal distribution of human mitochondrial pseudogenes, Genomics, 80, 71, 10.1006/geno.2002.6798
Bensasson, 2003, Rates of DNA duplication and mitochondrial DNA insertion in the human genome, J Mol Evol, 57, 343, 10.1007/s00239-003-2485-7
Ricchetti, 2004, Continued colonization of the human genome by mitochondrial DNA, PLoS Biol, 2, E273, 10.1371/journal.pbio.0020273
Thalman, 2004, Unreliable mtDNA data due to nuclear insertions: a cautionary tale from analysis of humans and other great apes, Mol Ecol, 13, 321, 10.1046/j.1365-294X.2003.02070.x
Richly, 2004, NUMTs in sequenced eukaryotic genomes, Mol Biol Evol, 21, 1081, 10.1093/molbev/msh110
Schmitz, 2005, Forty million years of independent evolution: a mitochondrial gene and its corresponding nuclear pseudogene in primates, J Mol Evol, 61, 1, 10.1007/s00239-004-0293-3
Thalman, 2005, Nuclear insertions help and hinder inference of the evolutionary history of gorilla mtDNA, Mol Ecol, 14, 179, 10.1111/j.1365-294X.2004.02382.x
Yao, 2008, Pseudomitochondrial genome haunts disease studies, J Med Genet, 45, 769, 10.1136/jmg.2008.059782
Hazkani-Covo, 2010, Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes, PLoS Genet, 6, e1000834, 10.1371/journal.pgen.1000834
Ramos, 2011, Nuclear insertions of mitochondrial origin: database updating and usefulness in cancer studies, Mitochondrion, 11, 946, 10.1016/j.mito.2011.08.009
Tsuji, 2012, Mammalian NUMT insertion is non-random, Nucleic Acids Res, 40, 9073, 10.1093/nar/gks424
Soto-Calderón, 2012, Factors affecting the relative abundance of nuclear copies of mitochondrial DNA (numts) in hominoids, J Mol Evol, 75, 102, 10.1007/s00239-012-9519-y
Soto-Calderón, 2014, Identification of species-specific nuclear insertions of mitochondrial DNA (numts) in gorillas and their potential as population genetic markers, Mol Phylogenet Evol, 81, 61, 10.1016/j.ympev.2014.08.018
Smigrodzki, 2005, Mitochondrial microheteroplasmy and a theory of aging and age-related disease, Rejuvenation Res, 8, 172, 10.1089/rej.2005.8.172
Rose, 2007, The mitochondrial DNA control region shows genetically correlated levels of heteroplasmy in leukocytes of centenarians and their offspring, BMC Genomics, 8, 293, 10.1186/1471-2164-8-293
Stefano, 2016, Mitochondrial DNA heteroplasmy in human health and disease, Biomed Rep, 4, 259, 10.3892/br.2016.590
Ramos, 2013, Frequency and pattern of heteroplasmy in the complete human mitochondrial genome, PLoS One, 8, e74636, 10.1371/journal.pone.0074636
Frenkel-Morgenstern, 2013, ChiTaRS: a database of human, mouse and fruit fly chimeric transcripts and RNA-sequencing data, Nucleic Acids Res, 41, D142, 10.1093/nar/gks1041
Yang, 2013, Possible formation of mitochondrial-RNA containing chimeric or trimeric RNA implies a post-transcriptional and post-splicing mechanism for RNA fusion, PLoS One, 8, e77016, 10.1371/journal.pone.0077016
Xie, 2016, Two RNAs or DNAs may artificially fuse together at a short homologous sequence (SHS) during reverse transcription or polymerase chain reactions, and thus reporting an SHS-containing chimeric RNA requires extra caution, PLoS One, 11, e0154855, 10.1371/journal.pone.0154855
Allen, 2015, Why chloroplasts and mitochondria retain their own genomes and genetic systems: colocation for redox regulation of gene expression, Proc Natl Acad Sci U S A, 112, 10231, 10.1073/pnas.1500012112
Bauer, 2015, Mechanisms regulating protein localization, Traffic, 16, 1039, 10.1111/tra.12310
Horvath, 2015, Role of membrane contact sites in protein import into mitochondria, Protein Sci, 24, 277, 10.1002/pro.2625
Kunze, 2015, The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance, Front Physiol, 6, 259, 10.3389/fphys.2015.00259
Aerni, 2015, Revealing the amino acid composition of proteins within an expanded genetic code, Nucleic Acids Res, 43, e8, 10.1093/nar/gku1087