Unbiased Estimation of N in Binomial Distribution B(N, p) When p is also Unknown

Rasul A. Khan1
1Cleveland State University

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anscombe FJ (1952) Large sample theory of sequential estimation. Proc Camb Philos Soc 48:600–607

Binet FE (1953) The fitting of the positive binomial distribution when both parameters are estimated from the sample. Ann Eugen 18:117–119

Blumenthal S, Dahiya RC (1981) Estimating the binomial parameter n. J Am Stat Assoc 76:903–909

Chow YS, Robbins H (1965) On the asymptotic theory of fixed-width sequential confidence intervals for the mean. Ann Math Stat 36:457–462

DasGupta A, Rubin H (2005) Estimation of binomial parameters when both $$n, p$$ are unknown. J Stat Plan Inference 130:391–404

Feldman D, Martin F (1968) Estimation of the parameter n in the Binomial Distribution. J Am Stat Assoc 63:150–158

Haldane JBS (1941) The fitting of binomial distribution. Ann Eugen 11:179–181

Khan RA (1969) A general method of determining fixed-width confidence intervals. Ann Math Stat 40:704–709

Khan RA (1998) Fixed-width confidence sequences for the normal mean and the binomial probability. Seq Anal 17:205–217

Khan RA (2007) Some remarks on Blackwell-Ross martingale inequalities. Probab Eng Inf Sci 21:109–115

Lehmann EL (2017) Elements of large-sample theory. Springer, New York

Malinovsky Y, Zacks S (2022) Two-stage and sequential unbiased estimation of N in binomial trials, when the probability of success p is unknown, Sequential Analysis, 2022