Un problème d'optimisation de forme pour la contrôlabilité exacte de l'équation des ondes 2D

Comptes Rendus Mathematique - Tập 343 - Trang 213-218 - 2006
Arnaud Münch1
1Laboratoire de mathématiques de Besançon, UMR CNRS 6623, 16, route de Gray, 25030 Besançon cedex, France

Tài liệu tham khảo

Allaire, 2004, Structural optimization using sensitivity analysis and level-set methods, J. Comput. Phys., 194, 363, 10.1016/j.jcp.2003.09.032 Asch, 1998, Geometrical aspects of exact controllability for the wave equation, COCV, 3, 163, 10.1051/cocv:1998106 Burq, 1997, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Acad. Sci. Paris, Ser. I, 325, 749, 10.1016/S0764-4442(97)80053-5 Cea, 1986, Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût, Math. Model. Num. Anal., 20, 371, 10.1051/m2an/1986200303711 Delfour, 2001, Shapes and Geometries – Analysis, Differential Calculus and Optimization Glowinski, 1996, Exact and approximate controllability for distributed parameter systems, Acta Numer., 159 Lions, 1988 Münch, 2005, A uniformly controllable and implicit scheme for the 1-D wave equation, M2AN, 39, 377, 10.1051/m2an:2005012 A. Münch, An implicit scheme uniformly controllable for the 2-D wave equation, J. Sci. Comput., in press A. Münch, Optimal design of the support of the control for the 2-D wave equation: numerical investigations, Prépublication du laboratoire de Mathématiques de Besancon, 2006/19 Zuazua, 2005, Propagation, observation, control and numerical approximation of waves approximated by finite difference methods, SIAM Rev., 47, 197, 10.1137/S0036144503432862